DSC 40A - Extra Practice Session 1
Wednesday, January 12, 2022

Problem 1. Visualizing Transformations
a) Suppose we have a dataset $x_{1}, x_{2}, \ldots, x_{n}$ and we transform the data set by $f(x)=2 x$. How does applying this transformation affect the order of the data? The spacing of the data?

$$
\begin{gathered}
a<b \\
2 a<2 b
\end{gathered}
$$

b) Suppose we have a dataset $x_{1}, x_{2}, \ldots, x_{n}$ of positive numbers and we transform the data set by $f(x)=x^{2}$. How does applying this transformation affect the order of the data? The spacing of the

c) For the previous transformation, what world happen to the order of the data if the data values were not all positive?

$$
\begin{aligned}
& \text { order can change } \\
& \text { find } a<b \text { where } b^{2}<a^{2} \\
& -3<2
\end{aligned} \quad 2^{2}<(-3)^{2} .
$$

$$
\begin{aligned}
& f(x)=x \pm c \\
& \\
& f(x)=c x \text { where } \\
& 0<c<1
\end{aligned}
$$

Problem 2. Minimizes and Maximizer
$x_{x^{*} \text { is a minimizer of } f(x)}$ then it's a minimizer
def. of minimizer
$f\left(x^{*}\right) \leqslant f(x)$ for any $x$
$5 f\left(x^{*}\right) \leqslant 5 f(x)$ for any $x$
$5 f\left(x^{*}\right)+3 \leq 5 f(x)+3$ for any $x$
goal $\because g\left(x^{*}\right) \leq g(x)$ for any $x$
Wind
try
it Let's find a function $g(x)$
$\left.\frac{1}{f(x)}\right) \frac{1}{f(x)} ?$ such that minimizer of $f$
$f(x)$ is a maximizer of $g$.

$$
g(x)=-f(x), \quad g(x)=-3 f(x)+2
$$

In our lecture, we argued that one way to make a good prediction $h$ is to minimize the mean absolute error:

We saw that the median of $y_{1}, \ldots, y_{n}$ is the prediction with the smallest mean error. Your friend Max has
many ideas for other ways to make predictions. In Homework 1, you'll evaluate one of those ideas. Here,
we'll evaluate another.
me'll evaluate another.
$M(h)=\max _{i=1, \ldots, n}\left|y_{i}-h\right|$

a) Suppose that the data set is arranged in increasing order, so $y_{1} \leq y_{2} \leq \cdots \leq y_{n}$. Argue that $M(h)=\max \left(\left|y_{1}-h\right|,\left|y_{n}-h\right|\right)$.


If $y_{i}$ with $i \neq 1$, $i \neq n$ where $h$ is furthest from $y_{i}$, if $h>y_{i}$, then $y_{i}$ isn't furthest from $h$ because $y_{1}$ is even further.
b) For arbitrary values of $y_{1}$ and $y_{n}$, show how to draw the graph of $M(h)=\underline{\max \left(\left|y_{1}-h\right|,\left|y_{n}-h\right|\right)}$.


