DSC 40A - Extra Practice Session 2
Wednesday, January 26, 2022

Recall that the least squares solutions to the problem of fitting a straight line, $h(x)=w_{1} x+w_{0}$, to the data $\left(x_{i}, y_{i}\right)$ are:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.

a) Without looking at any notes, write down the expression for the mean squared error of this line on the data set.

b) Without looking at any notes, write down the expression for the mean absolute error of this line on the data set.

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left|3 x_{i}+7-y_{i}\right| \\
& d \text { arp write } \quad\left(y_{i}-\left(3 x_{i}+7\right)\right)
\end{aligned}
$$

Problem 2. Visualizing Changes in the Regression Line

a) For the data set shown below, how will the slope and intercept d the regression line change if we move the red point in the direction of the arrow? -

only changing one y-value
b) For the data set shown how will the slope and intercept of the regression line change if we move the red point in dissection of the arrow?
original w, has a term

$$
\left(x_{j}-\bar{x}\right) y_{j}
$$

new w, has as its term j.

$$
\left(x_{j}-\bar{x}\right)\left(y_{j}-c\right) \leftarrow \operatorname{move}_{\text {down }}
$$

how much does w, change?

$$
=\underbrace{\left(x_{j}-\bar{x}\right) y_{j}}_{\text {old term }} \underbrace{\left(x_{j}-\bar{x}\right)\left(y_{j}-c\right)}_{\begin{array}{c}
\text { change } \\
\text { turns out } \\
\text { positive }
\end{array}}
$$

c) Compare two different possible changes to the data set shown below.

- Move the red point down c units.
- Move the blue point down c units.

Which move will change the slope of the regression line more? Why?

d) Suppose we transform a data set of $\left\{\left(x_{i}, y_{i}\right)\right\}$ pairs by doubling each y-value, creating a transformed data set $\left\{\left(x_{i}, 2 y_{i}\right)\right\}$. How does the slope of the regression line fit to the transformed data compare to the slope of the regression line fit to the original data? Can you prove your answer from the formula for the slope of the regression line?

$$
\begin{aligned}
& - \text { visually } \\
& \text { - formula }
\end{aligned}
$$

e) Suppose we transform a data set of $\left\{\left(x_{i}, y_{i}\right)\right\}$ pairs by doubling each x-value, creating a transformed data set $\left\{\left(2 x_{i}, y_{i}\right)\right\}$. How does the slope of the regression line fit to the transformed data compare to the slope or the regression line fit to the original data? Can you prove your answer from the formula for the slope of the regression line?

$$
\begin{aligned}
& \text {-formula } \\
& \qquad w_{1}=\frac{\sum \sum\left(2 x_{i}(-x)\left(y_{i}-\bar{y}\right)\right.}{\sum\left(2 x_{i}-\bar{x}\right)^{2}}\left(2\left(x_{i}-\bar{x}\right)^{2}\right) \quad \frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

Problem 3. Nonlinear Function
For the data above, apply a suitable transformer

For the data above, apply a suitable transformation then use linear regression to find the best fitting curve

of the form: Round the parameters a and b to three decimal places. | $x=\sqrt{a y^{2}+b y}$. |
| :--- |
| nonlinear |

idea: rewrite/manipulate until it look like

$$
\begin{aligned}
& \frac{x^{2} / y}{\text { variable }}=\text { constant }+ \text { constant } \underset{\text { vatialle }}{\frac{y}{1}} \\
& x=\sqrt{a y^{2}+b y} \\
& x^{2}=a y^{2}+b y \\
& x^{2}=y(a y+b) \\
& \text { plank } \underset{\text { of }}{\text { phi }} \Rightarrow\left[\frac{x^{2}}{y}\right]=a[y+b
\end{aligned}
$$

Problem 4. Optimization Algorithm

In the supplementary Jupyter notebook (linked), write a Python function that takes as input an array of names and returns the longest name in the array, where longest means having the most individual characters. If multiple names are tied for the longest, you can select any one of them.

