DSC 40A - Extra Practice Session 3
Wednesday, February 2, 2022

Problem 1. Matrix, Vector, Scalar, or Nonsense?
mentr.com 4695033
Suppose M is an $m \times n$ matrix, v is a vector in \mathbb{R}^{n}, and s is a scalar. Determine whether each of the following quantities is a matrix, vector, scalar, or nonsense.
a) $M v$
vector

$$
\text { non } n=\frac{e^{n(f)}}{n \times 1} m \times n
$$

d) $M^{T} M$
same? no: different dimensions
matrix $\underbrace{m \times n n \times m}$
se $m \times m$
f) $v^{T} M v$
none vector in \mathbb{R}^{m} $\mid x n m \times 1$

1
$V^{\top} M V$

j) $v v^{T}+M^{T} M$

Problem 2. Orthogonality
Two vectors are orthogonal if their dot product is 0 , i.e. for $\vec{a}, \vec{b} \in \mathbb{R}^{n}$:

$$
\vec{a} \cdot \vec{b}=\vec{a}^{T} \vec{b}=0 \Longrightarrow \vec{a}, \vec{b} \text { are orthogonal }
$$

Orthogonality is a generalization of perpendicularity to multiple dimensions. (Two orthogonal vectors in 2D meet at a right angle.)
a) s it possible for a vector to be orthogonal to itself?

$$
\begin{array}{lr}
\text { (h) }\left(S V^{\top} M^{\top}\right)^{\top} & \text { rule: }(A B)^{\top} \\
=\left(M^{\top}\right)^{\top}\left(V^{\top}\right)^{\top} S^{\top} & =B^{\top} A^{\top} \\
= & \underbrace{M V}_{\text {vector in } \mathbb{R}^{m}} S
\end{array}
$$

$$
\rightarrow \alpha \frac{u^{\top} v}{0}+\beta \frac{\text { uT w }^{\top}}{0}=0
$$

Given
\vec{u} othog to \vec{v} and $\vec{w} \quad 3 \vec{v}+\underline{v}$

$$
\Rightarrow u^{\top} v=0 \text { and } u^{\top} w=0
$$

show $u^{\top}(\alpha v+\beta w)=0$.
need to show \vec{b} othog to cols of A

bc cols of A are rows of $A^{\top}, A^{\top} b=\vec{O}$ means (er er col of A) $\cdot \vec{b}=0$ means \vec{b} orthog to every col of A

Problem 3. Farmfluencer
Billy the avocado farmer heard about the success of 72 year-old Gerald Stratford's viral gardening videos on Twitter and Instagram. After witnessing Gerald turn into the so-called King of Big Veg overnight, Billy is feeling inspired to up his social media game (he's also feeling a little bit jealous).

Billy is new to Instagram and is trying to understand how people gain followers. In particular, he wants to be able to predict the number of followers, y, based on these features:

a) Suppose Billy has access to a large data set of Instagram accounts, and he uses multiple regression on this data to fit a linear prediction rule of the form

What does ω_{2} represent in terms of Instagram followers?
followers
per year
b) What if instead of the number of years since the first post, $x^{(2)}$, Billy instead uses the number of days since the first post, $x^{(4)}$. Now he uses multiple regression to fit a prediction rule of the form

$$
H^{\prime}(\vec{x})=w_{0}^{\prime}+w_{1}^{\prime} x^{\prime}-\left(w_{3}^{\prime} x^{(3)}-w_{4}^{\prime} x^{(4)}\right.
$$

How do the parameters of this prediction rule $\left(w_{0}^{\prime}, w_{1}^{\prime}, w_{3}, w_{4}^{\prime}\right)$ compare to the parameters of original prediction rule $\left(w_{0}, w_{1}, w_{2}, w_{3}\right)$?

