Problem 1. Complements of Independent Events are Independent
\qquad
You may use the fact that $P(\bar{A} \cap \bar{B})=1-P(A \cup B)$, which should be apparent from the Venn diagram
below.

$$
\begin{aligned}
& \text { try it } \left.\begin{array}{l}
\text { wins } \\
P(A \cup B)-P(A)+P(B)-P(A \cap B)
\end{array}\right) . \quad \text { Proofraic } \\
& P(A)
\end{aligned}
$$

$$
\begin{aligned}
& =1-(P(A)+P(B)-P(A \cap B)) \\
& =1-(P(A)+P(B)-P(A) \times P(B)) \\
& =1-P(A)-P(B)+P(A) \times P(B)+\text { ad } \\
& ?=1-P(A)-P(B)+P(A) \times P(B)
\end{aligned}
$$

Let's represent a sample space S as a rectangle with area one. Then well represent events within that sample
space as regions with area equal to their probability.
a) For the sample space S shown below, draw two mutually exclusive events A and B with $P(A)=\frac{1}{4}$
and $P(B)=\frac{2}{3}$.
$A B \quad$ disjoint burlap
are these independent
no: showed in groupwork
def. of ind:"

$$
\begin{aligned}
& \square(A \cap B)=P(A) \times P(B) \\
& 0\left(A^{1 / 4} B\right)=P\left(A^{1 / 4} \leftarrow\right.
\end{aligned}
$$

A B
$P(A \mid B)=1 / 4$ means A takes conn tonal YES,
$P((A \cap B) \mid C)=P(A \mid C) \times P(B \mid C) C \quad B \quad C^{A} \quad P(A)=1 / 3$ within $1 / 2$, are $1 / 2$ did B indropendent?
ind: $P(A \cap B)=P(A) \times P(B)$
$1 / 12=1 / 4 * 1 / 3$ portion of B
taken
cont dep given $C^{12}: ~ P_{2}((A \cap B) \mid C) \neq P(A \mid C) \neq P(B C)$

Problem 3.
In parts of the world other than San Diego, the weather changes from day to day. In these places, people try to guess tomorrow's weather using the current conditions.

Weather data for 20 random days in Columbus, Ohio are recorded below, along with the next day's weather (rainy, cloudy, or sunny).

Suppose that today's humidity is $>50 \%$, the temperature is hot, and the air pressure is low. Use Naive Bayes (without smoothing) to predict whether tomorrow will be rainy, cloudy, or sunny. Show your work.

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(A)}
$$

same for cloudy, sunny rainy wins!

