DSC 40A

Theoretical Foundations of Data Science I

Least Squares Solutions

► The least squares solutions for the slope w_1 and intercept w_0 are:

$$w_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}$$

$$w_{0} = \bar{y} - w_{1}\bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

In This Video

We'll do an example and interpret the least squares solutions.

Recommended Reading

Course Notes: Chapter 2, Section 1

Example

$$w_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = w_{0} = \bar{y} - w_{1}\bar{x}$$

Xi	Уi	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(\mathbf{X}_{i}-\bar{\mathbf{X}})^{2}$
3	7				
4	3				

Interpretation of Intercept

▶ What is $H(\bar{x})$?

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same

Interpretation of Slope

- ▶ What is the sign of $(x_i \bar{x})(y_i \bar{y})$?
- What does the denominator measure?

What's next?

- Using linear regression formulas to fit certain special nonlinear functions to data.
- Generalizing to arbitrary polynomials.
- Generalizing to multiple predictor variables.