DST MOA
Theoretical Foundations of Data Science I

Least Squares Solutions

The least squares solutions for the slope w_{1} and intercept w_{0} are:

$$
w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad w_{0}=\bar{y}-w_{1} \bar{x}
$$

where

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}
$$

In This Video

We'll do an example and interpret the least squares solutions.

Recommended Reading

Course Notes: Chapter 2, Section 1

Example

$$
\begin{aligned}
& \bar{x}=5 \\
& \bar{y}=4 \\
& w_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\frac{\bar{y})}{n}\right.}{\sum_{i=1}^{n}\left(x_{i}-\underline{x}\right)^{2}}=-11 / 14 \\
& w_{0}=\bar{y}-w_{1} \bar{x}=4-(-11 / 14) \cdot 5
\end{aligned}
$$

Interperetaion of Intercept

$$
w_{0}=\bar{y}-w_{1} \bar{x}
$$

What is $H(\bar{x})$?

$$
\begin{aligned}
& H(x)=w, x+w_{0} \\
& H(\bar{x})=w, \bar{x}+w_{0} \\
&=w / \bar{x}+\bar{y}-w, \frac{1}{y}, \\
&=\bar{y} \\
& \text { intercupt }
\end{aligned}
$$

Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?
a) slope increases, intercept increases
b) slope decreases, intercept increases
c) slope stays same, intercept increases
d) slope stays same, intercept stays same

Interpretation of Slope

What's next?

- Using linear regression formulas to fit certain special nonlinear functions to data.
- Generalizing to arbitrary polynomials.
- Generalizing to multiple predictor variables.

