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In This Video

Can we use linear regression to fit nonlinear functions to data?

Recommended Reading

Course Notes: Chapter 2, Section 1



Example: Parallel Processing




Problem

Some parts of a program are necessarily sequential.
E.g., downloading the data must happen before analysis.
More processors do not speed up sequential code.

But they do speed up code.
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Amdahl’s Law
The time T it takes to run a program on p processors is:

tns
T(p) =ts+ —
(p) S D

where ts and tys are the time it takes the sequential and
non-sequential parts to run on one processor, respectively.



Amdahl’s Law
The time T it takes to run a program on p processors is:

tns
T(p) =ts+ —
(p) S D

where ts and tys are the time it takes the sequential and
non-sequential parts to run on one processor, respectively.

Problem: we don't know ts and tys.



Fitting Amdahl's Law

: we will learn t5 and tys from data.

Run with varying number of processors, record total time:
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Find prediction rule H(p) = tns + ts by minimizing MSE.
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General Problem

Given data (x1,y1),---, (Xn, Yn)-

Fit a non-linear rule@(x) = W1 - £ 4+ wp by minimizing MSE:
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Using definition of H:
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Minimizing MSE

Take partial derivatives, set to zero, solve. You'll find:
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Minimizing MSE

Take partial d%r‘ivatiuies, set to zero, solve. You'll find:
{

Define




Fitting Non-Linear Trends Z

To fit a prediction rule of the form

Create a new data set (z1,y1), ..., (Zn,¥n), Where z; = Xl

Fit‘H(z) = w1Z + wofusing familiar least squares solutions:
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Use w; and wy in original prediction rule, H(x).



Example: Amdahl’s Law

We have timed our program:

Processors Time (Hours)

1 8

2 4

4 3
_ Ins

Fit prediction rule: H(p) = 3 +ts
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Example: Amdahl’s Law
We found: tys = % ~ 6.88, ts=1

Therefore our prediction rule is:



Linear in the Parameters

We can fit rules like:

\_L) @x+@ @{(/Jr@ @) @ @/Jr.

| Z
(}' We can't fit rules like:
Vgsr e + wy sin(wyx + wp)
\

Has to be linear in the parameters, or linear as a function
of wy, wy.



Transformations

Try rewriting functions to see if they can be expressed as
linear functions in new variables.

H(X) = cox* €
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Transformations

Y = CoX“!
logy = log €y -+ €1 log X
v Wo Tz
S (logx — + > logx)(logy; - %Zlogy,)
Wy = =1 nn =1 . =1
(logx; — — Zlogx,)2
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General Strategy

To fit a prediction rule of the form __c&}: Wi '@4‘ Wo:
Y Z
Create a new data set (z1,v4),...,(zZn, Va), Where z; = f(x;)
and v; = g(vi).

Fit v = wyz + wy using familiar least squares solutions:
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where Z is the mean of the z;'s, v is the mean of the v;’s.

Wy =

If necessary, use wy and w; to find the parameters of the
original prediction rule.



Summary

We can sometimes fit nonlinear functions to data by
thinking of these non-linear functions as linear functions
in new variables.

Next Time: Using linear algebra to do regression helps us
fit even more non-linear functions to data and allows us
to make predictions based on multiple features.

E.g., experience, highest education level, GPA, number of
internships, etc.



