


Last Time

I We saw how to fit certain nonlinear functions to data by
thinking of them as linear functions in new variables.



In This Video

We show how to think of linear regression in another way
using linear algebra. This will eventually allow us to generalize
our results to fit more nonlinear functions to data as well as
make predictions based on multiple features.

Recommended Reading

Course Notes: Chapter 2, Section 2
Review: Linear Algebra Textbook



Quick Linear Algebra Review



Matrices

I An m× n matrix is a table of numbers with m rows and n
columns.

I We use upper-case letters for matrices.

A =

[
1 2 3
4 5 6

]

I AT denotes the transpose of A:

AT =

1 4
2 5
3 6





Matrix Addition and Scalar Multiplication

I We can add two matrices only if they are the same size.

I Addition occurs elementwise:[
1 2 3
4 5 6

]
+

[
7 8 9
−1 −2 −3

]
=

[
8 10 12
3 3 3

]
I Scalar multiplication occurs elementwise, too:

2 ·
[
1 2 3
4 5 6

]
=

[
2 4 6
8 10 12

]



Matrix-Matrix Multiplication

I We can multiply two matrices A and B only if

# columns in A = # rows in B.

I If A = m× n and B = n× p, the result is m× p.
I This is very useful.

I The ij entry of the product is:

(AB)ij =
n∑
k=1

AikBkj



Some Matrix Properties

I Multiplication is Distributive:

A(B+ C) = AB+ AC

I Multiplication is Associative:

(AB)C = A(BC)

I Multiplication is Not Commutative:

AB ̸= BA

I Transpose of Sum:

(A+ B)T = AT + BT

I Transpose of Product:

(AB)T = BTAT



Vectors

I An vector in Rn is an n× 1 matrix.

I We use lower-case letters for vectors.

v⃗ =


2
1
5
−3


I Vector addition and scalar multiplication occur
elementwise.



Geometric Meaning of Vectors

I A vector v⃗ = (v1, . . . , vn)T is an arrow to the point
(v1, . . . , vn).

I The length, or norm, of v⃗ is ∥⃗v∥ =
√
v21 + v22 + . . .+ v2n.



Dot Products

I The dot product of two vectors u⃗ and v⃗ in Rn is:

u⃗ · v⃗ = u⃗Tv⃗

I Using low-level matrix multiplication definition:

u⃗ · v⃗ =
n∑
i=1

uivi

= u1v1 + u2v2 + . . .+ unvn



Question

Which of these is another expression for the length of u⃗?

a) u⃗ · u⃗
b)

√
u⃗2

c)
√
u⃗ · u⃗

d) u⃗2



Properties of the Dot Product

I Commutative:

u⃗ · v⃗ = v⃗ · u⃗ = u⃗Tv⃗ = v⃗Tu⃗

I Distributive:
u⃗ · (⃗v+ w⃗) = u⃗ · v⃗+ u⃗ · w⃗



Matrix-Vector Multiplication

I Special case of matrix-matrix multiplication.

I Result is always a vector with same number of rows as the
matrix.

I One view: a “mixture” of the columns.[
1 2 1
3 4 5

]a1a2
a3

 = a1
[
1
3

]
+ a2

[
2
4

]
+ a3

[
1
5

]

I Another view: a dot product with the rows.



Question

If A is an m × n matrix and v⃗ is a vector in Rn, what are
the dimensions of the product v⃗TATA⃗v?

a) m× n (matrix)
b) n× 1 (vector)
c) 1× 1 (scalar)
d) The product is undefined.



Matrices and Functions

I Matrix-vector multiplication takes in a vector, outputs a
vector.

I An m× n matrix is an encoding of a linear function
mapping to .

I Matrix multiplication evaluates that function on a given
vector.



Back to Regression



Regression and Linear Algebra

I We chose the parameters for our prediction rule

H(x) = w0 + w1x

by minimizing the mean squared error:

Rsq(H) =
1

n

n∑
i=1

(yi − H(xi))2.

I This is kind of like the formula for the length of a vector!



Regression and Linear Algebra

I The observation vector is the vector y⃗ ∈ Rn with
components yi. This is the vector of observed values.

I The hypothesis vector is the vector h⃗ ∈ Rn with
components H(xi). This is the vector of predicted values.

I The error vector is the vector e⃗ ∈ Rn with components
ei = yi − H(xi). This is the vector of (signed) errors.



Regression and Linear Algebra

I The observation vector is the vector y⃗ ∈ Rn with
components yi. This is the vector of observed values.

I The hypothesis vector is the vector h⃗ ∈ Rn with
components H(xi). This is the vector of predicted values.

I The error vector is the vector e⃗ ∈ Rn with components
ei = yi − H(xi). This is the vector of (signed) errors.

I We can rewrite the mean squared error as:

Rsq(H) =
1

n

n∑
i=1

(yi − H(xi))2 =
1

n ||⃗e||
2 =

1

n ||⃗y− h⃗||2.



The Hypothesis Vector

I The hypothesis vector is the vector h⃗ ∈ Rn with
components H(xi). This is the vector of predicted values.

I The hypothesis vector h⃗ can be written

h⃗ =


H(x1)
H(x2)
...

H(xn)

 =


w0 + w1x1
w0 + w1x2

...
w0 + w1xn

 =



Rewriting the Mean Squared Error

I Define the design matrix X to be the n× 2 matrix

X =


1 x1
1 x2
...

...
1 xn

 .

I Define the parameter vector w⃗ ∈ R2 to be w⃗ =

[
w0

w1

]
.

I Then h⃗ = Xw⃗, so the mean squared error becomes:

Rsq(H) =
1

n ||⃗y− h⃗||2

Rsq(w⃗) =
1

n ||⃗y− Xw⃗||2



Summary

I The mean squared error is:

Rsq(w⃗) =
1

n ∥⃗y− Xw⃗∥2

where X is the design matrix containing the data, w⃗ is the
parameter vector, and y⃗ is the observation vector.

I Next time: We minimize this function using calculus.

I Soon, we’ll extend these results to more interesting cases:
I more nonlinear functions,
I multiple predictor variables.


