DSC 40A

Theoretical Foundations of Data Science I

Last Time

We used linear algebra to write the mean squared error for a linear prediction rule $H(x) = w_0 + w_1x$ as

$$R_{\mathsf{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2,$$

where

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \qquad \vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}, \qquad \vec{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

- X is the design matrix.
- $ightharpoonup \vec{w}$ is the parameter vector.
- $ightharpoonup \vec{y}$ is the observation vector.

In This Video

We minimize the mean squared error using calculus. The result will soon help us generalize to more exciting regression problems.

Recommended Reading

Course Notes: Chapter 2, Section 2 Review: Linear Algebra Textbook

Key Linear Algebra Facts

If A and B are matrices, and $\vec{u}, \vec{v}, \vec{w}, \vec{z}$ are vectors:

$$(A+B)^T = A^T + B^T$$

$$\triangleright$$
 $(AB)^T = B^T A^T$

$$\qquad \qquad \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^\mathsf{T} \vec{v} = \vec{v}^\mathsf{T} \vec{u}$$

$$\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$$

$$\qquad \qquad |\vec{u} + \vec{v}) \cdot (\vec{w} + \vec{z}) = \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{z} + \vec{v} \cdot \vec{w} + \vec{v} \cdot \vec{z}$$

Goal

► We want to minimize the mean squared error:

$$R_{\mathsf{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2.$$

Strategy: Calculus.

Goal

We want to minimize the mean squared error:

$$R_{\mathsf{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2.$$

- Strategy: Calculus.
- ▶ **Problem:** This is a *function of a vector*. What does it even mean to take the derivative of $R_{sq}(\vec{w})$ with respect to a vector \vec{w} ?

Function of a Vector

Solution: A function of a vector is really just a function of multiple variables, which are the components of the vector. In other words,

$$R_{\mathsf{sq}}(\vec{w}) = R_{\mathsf{sq}}(w_0, w_1, \dots, w_d),$$

where w_0, w_1, \dots, w_d are the entries of the vector \vec{w} .¹

► We know how to deal with derivatives of multivariable functions: the gradient!

¹In our case, \vec{w} has just two components, w_0 and w_1 . We'll be more general since we eventually want to use prediction rules with even more parameters.

Gradient with Respect to a Vector

The gradient of $R_{sq}(\vec{w})$ with respect to \vec{w} is the vector of partial derivatives:

$$abla_{ec{w}} R_{\mathsf{sq}}(ec{w}) = rac{dR_{\mathsf{sq}}}{dec{w}} = egin{bmatrix} rac{\partial R_{\mathsf{sq}}}{\partial w_0} \\ rac{\partial R_{\mathsf{sq}}}{\partial w_1} \\ \vdots \\ rac{\partial R_{\mathsf{sq}}}{\partial w_d}, \end{bmatrix}$$

where w_0, w_1, \ldots, w_d are the entries of the vector \vec{w} .

Goal

We want to minimize the mean squared error:

$$R_{\mathsf{sq}}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2.$$

- Strategy:
 - 1. Compute the gradient of $R_{sq}(\vec{w})$.
 - 2. Set it to zero and solve for \vec{w} .

Rewrite the Mean Squared Error

$$R_{\mathsf{sq}}(\vec{\mathsf{w}}) = \frac{1}{n} ||\vec{\mathsf{y}} - \mathsf{X}\vec{\mathsf{w}}||^2$$

Question

Which of the following is equivalent to $R_{sq}(\vec{w})$?

- a) $\frac{1}{n}(\vec{y} X\vec{w}) \cdot (X\vec{w} y)$ b) $\frac{1}{n}\sqrt{(\vec{y} X\vec{w}) \cdot (y X\vec{w})}$ c) $\frac{1}{n}(\vec{y} X\vec{w})^T(y X\vec{w})$ d) $\frac{1}{n}(\vec{y} X\vec{w})(y X\vec{w})^T$

Rewrite the Mean Squared Error

$$R_{\mathsf{sq}}(\vec{\mathbf{w}}) = \frac{1}{n} ||\vec{\mathbf{y}} - \mathbf{X}\vec{\mathbf{w}}||^2$$

Rewrite the Mean Squared Error

 $R_{sq}(\vec{w}) =$

Compute the Gradient

$$\frac{dR_{sq}}{d\vec{w}} = \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - \vec{2} \vec{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \vec{X}^T \vec{X} \vec{w} \right] \right)
= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(\vec{2} \vec{X}^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T \vec{X}^T \vec{X} \vec{w} \right) \right]$$

Compute the Gradient

$$\begin{split} \frac{dR_{\text{sq}}}{d\vec{w}} &= \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - \vec{2} \vec{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \vec{X}^T \vec{X} \vec{w} \right] \right) \\ &= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(\vec{2} \vec{X}^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T \vec{X}^T \vec{X} \vec{w} \right) \right] \end{split}$$

Question

Which of the following is $\frac{d}{d\vec{w}} (\vec{y} \cdot \vec{y})$?

- a) j
- b) $2\vec{y}$
- c) 1
- d) (

Compute the Gradient

$$\frac{dR_{sq}}{d\vec{w}} = \frac{d}{d\vec{w}} \left(\frac{1}{n} \left[\vec{y} \cdot \vec{y} - \vec{2} \vec{X}^T \vec{y} \cdot \vec{w} + \vec{w}^T \vec{X}^T \vec{X} \vec{w} \right] \right)
= \frac{1}{n} \left[\frac{d}{d\vec{w}} \left(\vec{y} \cdot \vec{y} \right) - \frac{d}{d\vec{w}} \left(\vec{2} \vec{X}^T \vec{y} \cdot \vec{w} \right) + \frac{d}{d\vec{w}} \left(\vec{w}^T \vec{X}^T \vec{X} \vec{w} \right) \right]$$

The Normal Equations

► To minimize $R_{sq}(\vec{w})$, set gradient to zero, solve for \vec{w} :

$$-2\mathbf{X}^{\mathsf{T}}\vec{\mathbf{y}} + 2\mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{w}} = 0$$
$$\implies \mathbf{X}^{\mathsf{T}}\mathbf{X}\vec{\mathbf{w}} = \mathbf{X}^{\mathsf{T}}\vec{\mathbf{y}}$$

- This is a system of equations in matrix form, called the normal equations.
- ► If inverse exists, solution is²

$$\vec{\mathbf{w}} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \vec{\mathbf{y}}.$$

²Don't actually compute inverse! Use Gaussian elimination or matrix decompositions.

Example

x_i	Уi
3	7
4	3
8	2

Summary

- We used linear algebra to do simple linear regression in a new way.
- Instead of using our formulas for w_0 and w_1 , we can find these parameters by solving the **normal equations**:

$$X^T X \vec{w} = X^T \vec{y}$$

Next time: We'll change the form of our prediction rule, and we'll see when the linear algebra still works.