DST MOA
Theoretical Foundations of Data Science I

Last Time

- We used linear algebra to write the mean squared error for a linear prediction rule $H(x)=w_{0}+w_{1} x$ as

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\underline{\vec{y}}-X \vec{w}\|^{2},
$$

where

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right], \quad \vec{w}=\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right], \quad \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right] .
$$

- X is the design matrix.
$\Rightarrow \vec{w}$ is the parameter vector.
$\Rightarrow \vec{y}$ is the observation vector.

In This Video

We minimize the mean squared error using calculus. The result will soon help us generalize to more exciting regression problems.

Recommended Reading

Course Notes: Chapter 2, Section 2 Review: Linear Algebra Textbook

Key Linear Algebra Facts

If A and B are matrices, and $\vec{u}, \vec{v}, \vec{w}, \vec{z}$ are vectors:

$$
\begin{aligned}
& (A+B)^{T}=A^{T}+B^{T} \\
& (A B)^{T}=B^{T} A^{T} \\
& \vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u} \\
& \|\vec{u}\|^{2}=\vec{u} \cdot \vec{u} \\
& (\vec{u}+\vec{v} \cdot(\vec{w}+\vec{z})=\vec{u} \cdot \vec{w}+\vec{u} \cdot \vec{z}+\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z}
\end{aligned}
$$

Goal

We want to minimize the mean squared error:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2} .
$$

- Strategy: Calculus.

Goal

- We want to minimize the mean squared error:

$$
R_{\mathrm{sq}}(\underline{\vec{w}})=\frac{1}{n}\|\underline{y}-X \vec{w}\|^{2} .
$$

- Strategy: Calculus.
$>$ Problem: This is a function of a vector. What does it even mean to take the derivative of $R_{\text {sq }}(\vec{w})$ with respect to a vector \vec{W} ?

Function of a Vector

- Solution: A function of a vector is really just a function of multiple variables, which are the components of the vector. In other words,

$$
R_{\mathrm{sq}}(\vec{w})=R_{\mathrm{sq}}\left(w_{0}, w_{1}, \ldots, w_{d}\right)
$$

where $w_{0}, w_{1}, \ldots, w_{d}$ are the entries of the vector \vec{w}^{1}

- We know how to deal with derivatives of multivariable functions: the gradient!

[^0]
Gradient with Respect to a Vector

The gradient of $R_{\mathrm{sq}}(\vec{w})$ with respect to \vec{w} is the vector of partial derivatives:

$$
\nabla_{\vec{w}} R_{\mathrm{sq}}(\vec{W})=\frac{d R_{\mathrm{sq}}}{d \vec{w}}=\left[\begin{array}{c}
\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}} \\
\frac{\partial R_{\mathrm{sq}}}{\partial w_{1}} \\
\vdots \\
\frac{\partial R_{\mathrm{sq}}}{\partial w_{d}}
\end{array}\right]
$$

where $w_{0}, w_{1}, \ldots, w_{d}$ are the entries of the vector \vec{w}.

Goal

We want to minimize the mean squared error:

$$
R_{\mathrm{sq}}(\underline{\vec{w}})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2} .
$$

- Strategy:

1. Compute the gradient of $R_{\mathrm{sq}}(\vec{w})$.
2. Set it to zero and solve for \vec{w}.

Rewrite the Mean Squared Error

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

Question

Which of the following is equivalent to $R_{\mathrm{sq}}(\vec{w})$?
a) $\frac{1}{n}(\vec{y}-X \vec{w}) \cdot(X \vec{w}-y)$
b) $\frac{1}{n} \sqrt{(\vec{y}-X \vec{w}) \cdot(y-X \vec{w})}$
(c) $\frac{1}{n}(\vec{y}-x \vec{w})^{T}(y-X \mid \vec{w})$)
d) $\frac{1}{n}(\vec{y}-X \vec{w})(y-X \vec{w})^{T}$

Rewrite the Mean Squared Error

$$
\begin{aligned}
& R_{\mathrm{sq}}(\vec{W})=\frac{1}{n}\|\vec{y}-X \vec{W}\|^{2} \\
& =\frac{1}{n}\left(y-x_{w}\right)^{\top}\left(y-x_{w}\right) \\
& =\frac{1}{n}\left(y^{\top}-(X \omega)^{\top}\right)(y \cdot X w) \\
& =\frac{1}{n}\left(y^{\top}-w^{\top} X^{\top}\right)(y-X w) \\
& \begin{array}{l}
=\frac{1}{n}\left(y^{\top} y-y^{\top} x w-\frac{w^{\top} x^{\top} y+w^{\top} x^{\top} x^{\prime}}{\left(x^{\top} y\right)^{\top} w}\right) \\
\left.=x^{\top} y^{\top} \cdot w=x^{\omega} y\right) \\
=x^{\top} y \cdot w
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left(y \cdot y-2 x^{\top} y \cdot w+w^{\top} x^{\top} x \omega\right)
\end{aligned}
$$

Compute the Gradient

$$
\begin{aligned}
\frac{d R_{\mathrm{sq}}}{d \vec{w}} & =\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-\overrightarrow{2} X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right) \\
& =\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(\overrightarrow{2} X^{\top} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)\right]
\end{aligned}
$$

Compute the Gradient

$$
\begin{aligned}
\frac{d R_{\mathrm{sq}}}{d \vec{w}} & =\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-\overrightarrow{2} X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right) \\
& =\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(\overrightarrow{2} X^{\top} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)\right]
\end{aligned}
$$

Question

Which of the following is $\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})$?
a) $\vec{y} \cdot \vec{y}$
b) $2 \vec{y}$
c) 1
d) 0
\uparrow
$y=[y$

Compute the Gradient

$$
\begin{aligned}
& \frac{d R_{s g}}{d \bar{w}}=\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\tilde{y} \cdot \vec{y}-\tilde{2} x^{T} \vec{y} \cdot \vec{w}+\vec{w}^{T} x^{T} x \bar{x}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P v}{d \vec{w}}=\frac{1}{r}\left[\begin{array}{c}
\frac{d}{d x}(c x)=c \\
\left.-2 x^{\top} \vec{y}+2 x^{\top} X \vec{w}\right]=0
\end{array}\right.
\end{aligned}
$$

The Normal Equations

To minimize $R_{\mathrm{sq}}(\vec{w})$, set gradient to zero, solve for \vec{w} :

$$
\begin{gathered}
-2 X^{\top} \vec{v}+2 X^{\top} X \vec{W}=0 \\
\Longrightarrow \\
\hline \frac{X^{\top} X}{}+\vec{v}=X^{\top} \vec{v} \\
\operatorname{matrix} \mid=v e c
\end{gathered}
$$

\Rightarrow This is a system of equations in matrix form, called the normal equations.

- If inverse exists, solution is ${ }^{2}$

$$
\vec{w}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y} .
$$

$$
\begin{aligned}
& \vec{\omega}=\left[\begin{array}{ll}
3 & 15 \\
15 & 89
\end{array}\right]^{-1} *\left[\begin{array}{l}
12 \\
49
\end{array}\right]=\left[\begin{array}{l}
111 / 14 \\
-11 / 14
\end{array}\right] \text { Eample } \quad H(X)=W_{0}+W_{1} X \\
& \text { solation satisfies } \\
& \begin{aligned}
& \\
& X^{T} X w=X^{\top} y \\
& \text { solation sation }
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\vec{y}=\left[\begin{array}{l}
7 \\
3 \\
2
\end{array}\right] \quad x^{\top} y=\left[\begin{array}{lll}
11 & 1 \\
3 & 4 & 8
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
2
\end{array}\right. \\
=\left[\begin{array}{l}
12 \\
49
\end{array}\right]
\end{array} \\
& \begin{array}{c|c}
x_{i} & y_{i} \\
\hline 3 & 7 \\
4 & 3 \\
8 & 2
\end{array} \\
& X^{\top} X=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 4 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
1 & 4 \\
1 & 8
\end{array}\right]=\left[\begin{array}{lc}
3 & 15 \\
15 & 89
\end{array}\right]
\end{aligned}
$$

Summary

- We used linear algebra to do simple linear regression in a new way.
- Instead of using our formulas for w_{0} and w_{1}, we can find these parameters by solving the normal equations:

$$
X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

- Next time: We'll change the form of our prediction rule, and we'll see when the linear algebra still works.

[^0]: ${ }^{1}$ In our case, \vec{w} has just two components, w_{0} and w_{1}. We'll be more general since we eventually want to use prediction rules with even more parameters.

