


Last Time

I We found that any prediction rule that was linear in the
parameters could be solved by the normal equations

XTXw⃗ = XTy⃗.



In This Video

We will make predictions based on multiple features and
interpret the resulting prediction rules.

Recommended Reading

Course Notes: Chapter 2, Section 2
Review: Linear Algebra Textbook



Using Multiple Features

I How do we predict salary given multiple features?

I We believe salary is a function of experience and GPA.

I I.e., there is a function H so that:

salary ≈ H(years of experience,GPA)

I Recall: H is a prediction rule.

I Our goal: find a good prediction rule, H.



Example Prediction Rules

H1(experience,GPA) = $2, 000× (experience) + $40,000× GPA
4.0

H2(experience,GPA) = $60,000× 1.05(experience+GPA)

H3(experience,GPA) = cos(experience) + sin(GPA)



Linear Prediction Rule

I We’ll restrict ourselves to linear prediction rules:

H(experience,GPA) = w0 +w1 × (experience) +w2 × (GPA)

I This is called multiple linear regression.

I Since H is linear in the parameters w0,w1,w2, the solution
comes from solving the normal equations.



The Data

I For each of n people, collect each feature, plus salary:

Person # Experience GPA Salary
1 3 3.7 85,000
2 6 3.3 95,000
3 10 3.1 105,000

I We represent each person with a feature vector:

x⃗1 =
[
3
3.7

]
, x⃗2 =

[
6
3.3

]
, x⃗3 =

[
10
3.1

]



Geometric Interpretation



The Hypothesis Vector

I When our prediction rule is

H(experience,GPA) = w0+w1× (experience)+w2× (GPA),

the hypothesis vector h⃗ ∈ Rn can be written

h⃗ =


H(experience1,GPA1)
H(experience2,GPA2)

...
H(experiencen,GPAn)



=


1 experience1 GPA1
1 experience2 GPA2
...

...
...

1 experiencen GPAn


w0

w1

w2

 .



Solution

I Use design matrix

X =


1 experience1 GPA1
1 experience2 GPA2
...

...
...

1 experiencen GPAn


and solve the normal equations

XTXw⃗ = XTy⃗

to find the optimal choice of parameters.

I Notice that the rows of the design matrix are the
(transposed) feature vectors, with an additional 1 in front.



Notation for Multiple Linear Regression

I We will need to keep track of multiple1 features for every
individual in our data set.

I As before, subscripts distinguish between individuals in
our data set. We have n individuals (or training
examples.)

I Superscripts distinguish between features.2 We have d
features.
I experience = x(1)
I GPA = x(2)

1In practice, might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented Feature Vectors

I The augmented feature vector Aug(⃗x) is the vector
obtained by adding a 1 to the front of feature vector x⃗:

x⃗ =


x(1)

x(2)

..

.

x(d)

 Aug(⃗x) =



1

x(1)

x(2)

..

.

x(d)


w⃗ =



w0

w1

w2

..

.

wd


I Then, our prediction rule is

H(⃗x) = w0 + w1x(1) + w2x(2) + . . .+ wdx(d)

= w⃗ · Aug(⃗x).



The General Problem

I We have n data points (or training examples):(⃗
x1, y1

)
, . . . ,

(⃗
xn, yn

)
where each x⃗i is a feature vector of d

features:

x⃗i =


x(1)i
x(2)i
. . .

x(d)i

 .

I We want to find a good linear prediction rule:

H(⃗x) = w0 + w1x(1) + w2x(2) + . . .+ wdx(d)

= w⃗ · Aug(⃗x)



The General Solution

I Use design matrix

X =


1 x(1)1 x(2)1 . . . x(d)1

1 x(1)2 x(2)2 . . . x(d)2
...

...
...

...
1 x(1)n x(2)n . . . x(d)n

 =


Aug(x⃗1)T
Aug(x⃗2)T

...
Aug(x⃗n)T


and solve the normal equations

XTXw⃗ = XTy⃗

to find the optimal choice of parameters.



Interpreting the Parameters

I With d features, w⃗ has d+ 1 entries.

I w0 is the bias.

I w1, . . . ,wd each give the weight of a feature.

H(⃗x) = w0 + w1x(1) + . . .+ wdx(d)

I Sign of wi tells us about relationship between ith feature
and outcome.



Example: Predicting Sales

I For each of 26 stores, we have:
I net sales,
I size (sq ft),
I inventory,
I advertising expenditure,
I district size,
I number of competing stores.

I Goal: predict net sales given size, inventory, etc.

I To begin:

H(size, competitors) = w0 + w1 × size+ w2 × competitors



Example: Predicting Sales

H(size, competitors) = w0 + w1 × size+ w2 × competitors

Question

What will be the sign of w1 and w2?
A) w1 = +, w2 = −
B) w1 = +, w2 = +
C) w1 = −, w2 = −
D) w1 = −, w2 = +



Demo



Question

Which feature has the greatest effect on the outcome?

A) size: w1 = 16.20
B) inventory: w2 = 0.17
C) advertising: w3 = 11.53
D) district size: w4 = 13.58
E) competing stores: w5 = −5.31



Which features are most “important”?

I Not necessarily the feature with largest weight.

I Features are measured in different units, scales.

I We should standardize each feature.



Standard Units

I To standardize (z-score) a feature, subtract mean, divide
by standard deviation.

I Example: 1, 7, 7, 9
I Mean: 6
I Standard Deviation:√

1

4
((−5)2 + (1)2 + (1)2 + (3)2) = 3

I Standardized Data:

1− 6

3
= −5

3
,

7− 6

3
=

1

3
,

7− 6

3
=

1

3
,

9− 6

3
= 1

I Measures number of standard deviations above the mean.



Standard Units for Multiple Regression

I Standardize each feature (store size, inventory, etc.)
separately.

I No need to standardize outcome (net sales).

I Solve normal equations. The resulting w0,w1, . . . ,wd are
called the standardized regression coefficients.

I They can be directly compared to one another.



Demo



Nonlinear Function of Multiple Features

I Suppose we want to fit a rule of the form:

H(size, competitors) = w0 + w1size+ w2size2

+ w3competitors+ w4competitors2

= w0 + w1s+ w2s2 + w3c+ w4c2

I Make design matrix:

X =


1 s1 s21 c1 c21

1 s2 s22 c2 c22

..

.
..
.

..

.
..
.

1 sn s2n cn c2n


Where ci and si are the
competitors and size of
the ith store.



Summary

I The normal equations can be used to solve the multiple
linear regression problem.

I Interpret the parameters as weights. Signs give
meaningful information, but only compare weights if data
is standardized.


