DST MOA
Theoretical Foundations of Data Science I

Last Time

We found that any prediction rule that was linear in the parameters could be solved by the normal equations

$$
X^{\top} X \vec{w}=X^{\top} \vec{y} .
$$

In This Video

We will make predictions based on multiple features and interpret the resulting prediction rules.

Recommended Reading

Course Notes: Chapter 2, Section 2 Review: Linear Algebra Textbook

Using Multiple Features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
\Rightarrow I.e., there is a function H so that:

$$
\text { salary } \approx H(\text { years of experience, GPA })
$$

Recall: H is a prediction rule.

- Our goal: find a good prediction rule, H.

Example Prediction Rules

$H_{1}($ experience, $G P A)=\$ 2,000 \times($ experience $)+\$ 40,000 \times \frac{\text { GPA }}{4.0}$
$H_{2}($ experience,$G P A)=\$ 60,000 \times 1.05^{(\text {experience }+G P A)}$
$H_{3}($ experience,$G P A)=\cos ($ experience $)+\sin ($ GPA $)$

Linear Prediction Rule

- We'll restrict ourselves to linear prediction rules:
$H($ experience, GPA $)=\underline{w_{0}}+\underline{w}_{1} \times($ experience $)+\underline{w}_{2} \times(G P A)$
\Rightarrow This is called multiple linear regression.
\Rightarrow Since H is linear in the parameters w_{0}, w_{1}, w_{2}, the solution comes from solving the normal equations.

The Data

- For each of n people, collect each feature, plus salary:

Person \#	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	95,000
3	10	3.1	$\underbrace{105,000}$

- We represent each person with a feature vector:

Geometric Interpretation

The Hypothesis Vector

- When our prediction rule is
$H($ experience,$G P A)=w_{0}+w_{1} \times($ experience $)+w_{2} \times(G P A)$,
the hypothesis vector $\vec{h} \in \mathbb{R}^{n}$ can be written

$$
\begin{aligned}
& \vec{h}=\left[\begin{array}{c}
H\left(\text { experience }_{1}, \text { GPA }_{1}\right) \\
H(\text { experience } \\
2
\end{array} \text { GPA }_{2}\right) ~\left(\begin{array}{c}
\text { a } \\
\vdots\left(\text { experience }_{n}, \text { GPA }_{n}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
1 & \text { experience }_{1} & \mathrm{GPA}_{1} \\
1 & \text { experience }_{2} & \text { GPA }_{2} \\
\vdots & \vdots & \vdots \\
1 & \text { experience }_{n} & \mathrm{GPA}_{n}
\end{array}\right] \xrightarrow{\mathbf{W}}
\end{aligned}
$$

Solution

- Use design matrix

$$
X=\left[\begin{array}{ccc}
{[1} & \text { experience }_{1} & \mathrm{GPA}_{1} \\
\hline 1 & \text { experience }_{2} & \mathrm{GPA}_{2} \\
\vdots & \vdots & \vdots \\
1 & \text { experience }_{n} & \mathrm{GPA}_{n}
\end{array}\right]
$$

and solve the normal equations

$$
x^{\top} X \vec{w}=x^{\top} \vec{y}
$$

to find the optimal choice of parameters.

- Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for Multiple Linear Regression

- We will need to keep track of multiple ${ }^{1}$ features for every individual in our data set.
- As before, subscripts distinguish between individuals in our data set. We have n individuals (or training examples.)
\triangleright Superscripts distinguish between features. ${ }^{2}$ We have $d \int^{2}$ features.
\Rightarrow experience $=x^{(1)}$

\Rightarrow GPA $=x^{(2)}$

[^0]
Augmented Feature Vectors

The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

- Then, our prediction rule is

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x}) .
\end{aligned}
$$

The General Problem

- We have n data points (or training examples): $\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)$ where each \vec{x}_{i} is a feature vector of d features:

$$
\overrightarrow{x_{i}}=\left[\begin{array}{c}
x_{i}^{(1)} \\
x_{i}^{(2)} \\
\cdots \\
x_{i}^{(d)}
\end{array}\right] .
$$

- We want to find a good linear prediction rule:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The General Solution

- Use design matrix

$$
X=\left[\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{1}^{(2)} & \ldots & x_{1}^{(d)} \\
1 & x_{2}^{(1)} & x_{2}^{(2)} & \ldots & x_{2}^{(d)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & x_{n}^{(1)} & x_{n}^{(2)} & \ldots & x_{n}^{(d)}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{Aug}\left(\overrightarrow{x_{1}}\right)^{T} \\
\operatorname{Aug}\left(\overrightarrow{x_{2}}\right)^{T} \\
\vdots \\
\operatorname{Aug}\left(\overrightarrow{x_{n}}\right)^{T}
\end{array}\right]
$$

and solve the normal equations

$$
X^{\top} X \vec{w}=X^{\top} \vec{y}
$$

to find the optimal choice of parameters.

Interpreting the Parameters

- With d features, \vec{w} has $d+1$ entries.
${ }^{-} w_{0}$ is the bias.
$>w_{1}, \ldots, w_{d}$ each give the weight of a feature.

$$
H(\vec{x})=w_{0}+w_{1} x^{(1)}+\ldots+w_{d} x^{(d)}
$$

\Rightarrow Sign of w_{i} tells us about relationship between ith feature and outcome.

Example: Predicting Sales

- For each of 26 stores, we have:
- net sales,
- size (sq ft),
- inventory,
- advertising expenditure,
- district size,
$>$ number of competing stores.
- Goal: predict net sales given size, inventory, etc.
- To begin:
$H($ size, competitors $)=w_{0}+w_{1} \times$ size $+w_{2} \times$ competitors

Example: Predicting Sales

$H($ size, competitors $)=w_{0}+w_{1} \times \underline{\text { size }}+w_{2} \times$ competitors

Question

What will be the sign of w_{1} and w_{2} ?
$\begin{array}{ll}\text { (A) } w_{1}=+, & w_{2}=- \\ \text { D) } w_{1}=+, & w_{2}=+ \\ \text {) } w_{1}=-, & w_{2}=- \\ \text { \&) } w_{1}=-, & w_{2}=+\end{array}$

Demo

Question

Which feature has the greatest effect on the outcome?
A) size:
$w_{1}=16.20$
B) inventory:
$w_{2}=0.17$
C) advertising:
$w_{3}=11.53$
D) district size:
$w_{4}=13.58$
E) competing stores: $\quad w_{5}=-5.31$

Which features are most "important"?

- Not necessarily the feature with largest weight.
- Features are measured in different units, scales.
- We should standardize each feature.

Standard Units

To standardize (z-score) a feature, subtract mean, divide by standard deviation.

- Example: 1, 7, 7, 9
- Mean: 6
- Standard Deviation:

$$
\sqrt{\frac{1}{4}\left((-5)^{2}+(1)^{2}+(1)^{2}+(3)^{2}\right)}=3
$$

- Standardized Data:

$$
\frac{1-6}{3}=-\frac{5}{3}, \quad \frac{7-6}{3}=\frac{1}{3}, \quad \frac{7-6}{3}=\frac{1}{3}, \quad \frac{9-6}{3}=1
$$

\Rightarrow Measures number of standard deviations above the mean.

Standard Units for Multiple Regression

- Standardize each feature (store size, inventory, etc.) separately.
- No need to standardize outcome (net sales).
\Rightarrow Solve normal equations. The resulting $w_{0}, w_{1}, \ldots, w_{d}$ are called the standardized regression coefficients.
- They can be directly compared to one another.

Demo

Nonlinear Function of Multiple Features

- Suppose we want to fit a rule of the form:
$H($ size, competitors $)=w_{0}+w_{1}$ size $+w_{2}$ size 2
$+w_{3}$ competitors $+w_{4}$ competitors 2
$=w_{0}+w_{1} s+w_{2} s^{2}+w_{3} c+w_{4} c^{2}$
> Make design matrix:

$$
X=\left[\begin{array}{ccccc}
1 & s_{1} & s_{1}^{2} & c_{1} & c_{1}^{2} \\
1 & s_{2} & s_{2}^{2} & c_{2} & c_{2}^{2} \\
\vdots & \vdots & \vdots & \vdots & \\
1 & s_{n} & s_{n}^{2} & c_{n} & c_{n}^{2}
\end{array}\right]
$$

Where c_{i} and s_{i} are the competitors and size of the ith store.

Summary

- The normal equations can be used to solve the multiple linear regression problem.
- Interpret the parameters as weights. Signs give meaningful information, but only compare weights if data is standardized.

[^0]: ${ }^{1}$ In practice, might use hundreds or even thousands of features.
 ${ }^{2}$ Think of them as new variable names, such as new letters.

