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Last Time

We found that any prediction rule that was linear in the
parameters could be solved by the normal equations

Xxw = XTy.



In This Video

We will make predictions based on multiple features and
interpret the resulting prediction rules.

Recommended Reading

Course Notes: Chapter 2, Section 2
Review: Linear Algebra Textbook



Using Multiple Features

How do we predict salary given features?
We believe salary is a function of experience and GPA.

l.e., there is a function H so that:

salary ~ H(years of experience, GPA)
Recall: H is a prediction rule.

Our goal: find a good prediction rule, H.



Example Prediction Rules

. . GPA
Hi(experience, GPA) = $2,000 x (experience) + $40,000 x 10

Ha(experience, GPA) = $60,000 x 1.05(eperience+GPA)

Hs(experience, GPA) = cos(experience) + sin(GPA)



Linear Prediction Rule
We'll restrict ourselves to linear prediction rules:

H(experience, GPA) = wy + w,_x (experience) 4w, x (GPA)
This is called multiple linear regression.

Since H is linear in the parameters wy, wy, W, the solution
comes from solving the normal equations.



The Data

For each of n people, collect each feature, plus salary:

Person # | Experience GPA | Salary

1 3 3.7 85,000

2 6 33| 95000

3 10 3.1 | 105,000
—_ o~ ="

We represent each person with a feature vector:
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The Hypothesis Vector

When our prediction rule is

H(experience, GPA) = wo + w; x (experience) +ws X (GPA)

9

the hypothesis vector h € R" can be written
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Solution

Use design matrix

1 experience;
1 experience, GPA;

1 experience, GPA,
and solve the normal equations

to find the optimal choice of parameters.
Notice that the rows of the design matrix are the

(transposed) feature vectors, with an additional 1 in front.
—_



Notation for Multiple Linear Regression

We will need to keep track of multiple’ features for every
individual in our data set.

As before, subscripts distinguish between individuals in
our data set. We have n individuals (or training
examples.) - %\

(3
Superscripts distinguish between features.? We have d\Jx
features. -

experience = x(1) ol.WhSwn
GPA = x(@

"In practice, might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented Feature Vectors

The augmented feature vector Aug(X) is the vector
obtained by adding a 1 to the front of feature vector x:
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Then, our prediction rule is

HX) = wo + wix® + wox® 4+ .+ wgx(@
= w - Aug(X).



The General Problem

We have n data points (or training examples):

(X1,v1) ..., (Xn,yn) Where each X; is a feature vector of d
features:
X
(2)
X = |%i
(@)

We want to find a good linear prediction rule:

HX) = wo + wix® + wox® 4+ wgx(@

= w - Aug(X)



The General Solution

Use design matrix

1 xgl) xf) . xgd)
A K2 W]
1 xﬁ,l) xff) . xﬁ,d)

and solve the normal equations
X'xw =Xy

to find the optimal choice of parameters.



Interpreting the Parameters

With d features, w has d + 1 entries.
Wy is the bias.

w1, ..., Wy each give the weight of a feature.

H(X) = wo + wix®M + ..+ wgx(@

Sign of w; tells us about relationship between ith feature
and outcome.



Example: Predicting Sales

For each of 26 stores, we have:
net sales,
size (sq ft),
inventory,
advertising expenditure,
district size,
number of competing stores.

Goal: predict net sales given size, inventory, etc.

To begin:

H(size, competitors) = wy + Wy x Size + wy x competitors
—_—




Example: Predicting Sales

H(size, competitors) = wy + wy x Size + wa x competitors

What will be the sign of w; and wy?

W1 +, Wo=—
R) Wi =+, wy=+
Wy =—, Wy=-—

\B{W1=—, Wo =

|
+
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Which feature has the greatest effect on the outcome?

A) size: w; = 16.20
B) inventory: wy = 0.17

C) advertising: ws = 11.53
D) district size: Wy = 13.58

E) competing stores: ws = —5.31




Which features are most “important”?

Not necessarily the feature with largest weight.
Features are measured in different units, scales.

We should standardize each feature.



Standard Units

To standardize (z-score) a feature, subtract mean, divide
by standard deviation.

Example: 1,7,7,9
Mean: 6
Standard Deviation:

1-6 5 -6 _1 7T—6 1 9-6

Ehml Y , 1
3G e 3y 3V

Measures number of standard deviations above the mean.

—



Standard Units for Multiple Regression

Standardize each feature (store size, inventory, etc.)
separately.

No need to standardize outcome (net sales).

Solve normal equations. The resulting wy, wy, ..., wy are
called the standardized regression coefficients.

They can be directly compared to one another.
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Nonlinear Function of Multiple Features

Suppose we want to fit a rule of the form:

H(size, competitors) = wy + w;Size + wssize?
+ wscompetitors + W4competitors2
= Wo + WS + WaS2 + W5C + wyc?

Make design matrix:

(1 51 s2 ¢ &
Where ¢; and s; are the
competitors and size of
the ith store.

1 sy s2 co 3




Summary

The normal equations can be used to solve the multiple
linear regression problem.

Interpret the parameters as weights. Signs give

meaningful information, but only compare weights if data
is standardized.



