DSC 40A

Theoretical Foundations of Data Science I

In This Video

Which prediction minimizes the mean error?

Recommended Reading

Course Notes: Chapter 1, Section 1

The Best Prediction

- ightharpoonup We want the best prediction, h^* .
- ▶ Goal: find *h* that minimizes the mean error:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

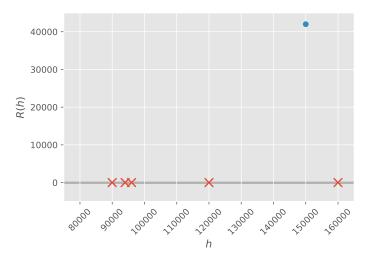
This is an optimization problem.

Question

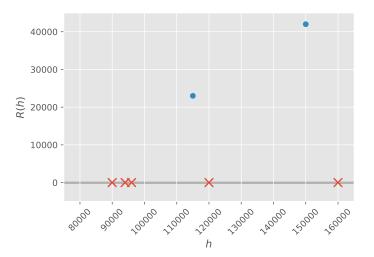
Can we use calculus to minimize R?

Minimizing with Calculus

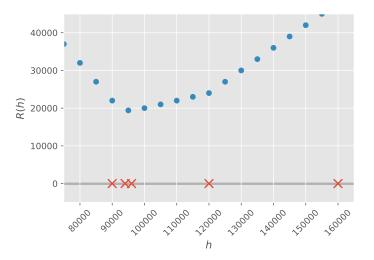
Calculus: take derivative, set equal to zero, solve.

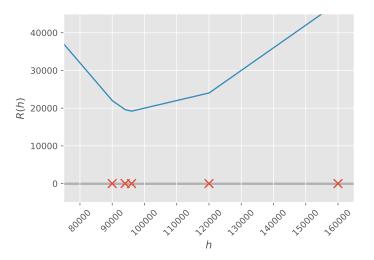


Recall: R(150,000) = 42,000



Recall: R(115,000) = 23,000



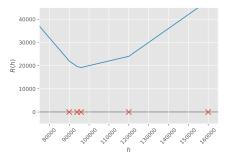


Question

A local minimum occurs when the slope of a function goes from ______. Select all that apply.

- A) positive to negative
- B) negative to positive
- C) positive to zero
- D) negative to zero

Goal



- Find where slope of R goes from negative to non-negative.
- ► Want a formula for the slope of *R* at *h*.

Sums of Linear Functions

Let

$$f_1(x) = 3x + 7$$
 $f_2(x) = 5x - 4$ $f_3(x) = -2x - 8$

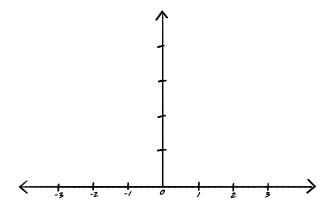
▶ What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?

Sums of Absolute Values

Let

$$f_1(x) = |x - 2|$$
 $f_2(x) = |x + 1|$ $f_3(x) = |x - 3|$

▶ What is the slope of $f(x) = f_1(x) + f_2(x) + f_3(x)$?



The Slope of the Mean Error

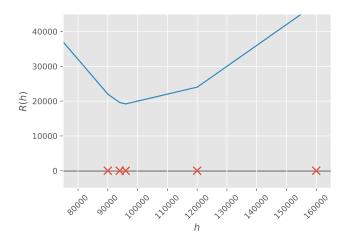
R(h) is a sum of absolute value functions (times $\frac{1}{n}$):

$$R(h) = \frac{1}{n} (|h - y_1| + |h - y_2| + \ldots + |h - y_n|)$$

The Slope of the Mean Error

The slope of R at h is:

$$rac{1}{n}$$
 · $\left[(\# \ \text{of} \ y_i \text{'s} < h) - (\# \ \text{of} \ y_i \text{'s} > h)
ight]$



Where the Slope's Sign Changes

The slope of R at h is:

$$\frac{1}{n}$$
 · [(# of y_i's < h) - (# of y_i's > h)]

Question

Suppose that n is odd. At what value of h does the slope of R go from negative to positive?

- A) $h = \text{mean of } y_1, \dots, y_n$
- B) $h = \text{median of } y_1, \dots, y_n$
- C) $h = \text{mode of } y_1, \dots, y_n$

Summary: The Median Minimizes the Mean Error

- Our problem was: find h^* which minimizes the mean error, $R(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$.
- ▶ The answer is: Median $(y_1, ..., y_n)$.
- ► The **best prediction**¹ is the **median**.
- Next time: We consider a different measure of error that is differentiable.

¹in terms of mean error