$$
\text { SC } 40 A
$$

Theoretical Foundations of Data Science I

In This Video

- Conditional probability, the probability of one event given that another has occurred

Conditional probabilities

Probability of an event may change if have additional information about outcomes.
ex.) rolling a die
Suppose E and F are events, and $P(F)>0$. Then,

$$
\begin{aligned}
& E=\{4,5,6\} \\
& F=\{2,4,6\} \rightarrow P(F)=1 / 2(E \mid F)=\frac{P(E \cap F)}{P(F)} \\
& E \cap F=\{4,6\} \rightarrow P(E \cap F\}=1 / 3
\end{aligned}
$$

 ie.,

$$
\frac{P(E \cap F)=P(E \mid F) P(F)}{} \quad E=\{4,5,6\}
$$

$$
F=\{2,4,6\} \quad P(>3 \text { |even })=\frac{\frac{1}{6}+\frac{1}{6}}{\frac{6}{6}+\frac{1}{6}+\frac{1}{6}}-\left(\frac{2}{3}\right] P(E)=\frac{1}{6}+\frac{1}{6}+\frac{1}{6}=\frac{1}{2}
$$

Conditional probabilities

Are these probabilities equal? The probability that two siblings are girls if we know the oldest is a girl. The probability that two siblings are boys if we know that there is a boy.

Assume that each child being a boy or a girl is equally likely.

What do you think?
A. they are equal
B. they are not equal

Conditional probabilities
Are these probabilities equal? $S=\{b, g\}$ for $2^{n d}$ sibling The probability that two siblings are girls if usknow the oldest is a girl. 1/2 The probability that two siblings are boys if we know that there is a boy.

$$
\begin{aligned}
& S=\{g g, \quad g b, b g, b b\} \\
& E=\{g g\} \longrightarrow P(1 / 41 / 41 / 4
\end{aligned}
$$

Conditional probabilities

Are these probabilities equal?
The probability that two siblings are girls if we know the oldest is a girl. The probability that two siblings are boys if we know that there is a boy.

Assume that each child being a boy or a girl is equally likely.

$$
\begin{aligned}
& S=\{g g, b b, g b, b g\} \\
& E=\{b b\} \rightarrow P(E)=1 / 4 \quad P(E \cap F)=P(E)=1 / 4 \\
& F=\{b b, g b, b g\} \rightarrow P(F)=3 / 4 \quad P(E / F)=\frac{P(E \cap F)}{P(F)}=1 / 4 / 4 / 4
\end{aligned}
$$

Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Dominoes

In a set of dominos, each tile has two sides with a number of dots on each side: zero, one, two, three, four, five or six. There are 28 total tiles, with each number of dots appearing alongside each other number (including itself) on a single tile.

Question 1: What is the probability of drawing a "double" from a set of dominoes — that is, a tile with the same number on both sides?

Question 2: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What's the probability that this tile is a double, with six on both sides?

Question 3: Now your friend picks a random tile from the set, looks at it, and tells you that they have a six. What is the probability that your friend's tile is a double, with six on both sides?

Dominoes

Question 1: What is the probability of drawing a "double" from a set of dominoes that is, a tile with the same number on both sides?

$$
\frac{7}{28}=\frac{1}{4}
$$

$$
{ }_{2}^{28}=S
$$

Five Thirty Eight Riddler Express: https://fivethirtyeight.com/features/can-you-eat-an-apple-like-a-toddler/

Dominoes

Question 2: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What's the probability that this tile is a double, with six

$$
\begin{aligned}
& S=\text { all } 28 \text { dominoes } \\
& E=\text { all doubles } \\
& F=\text { all dominoes with }
\end{aligned}
$$

$S=$ marked dominoes $\rightarrow 56$
$E=$ marked dominoes where both halves are $\rightarrow 44$
same $11, \frac{1}{1}$
$F=$ marked dom in pes where a six is marked

Dominoes

Question 2: Now you pick a random tile from the set and uncover only one side, revealing that it has six dots. What's the probability that this tile is a double, with six on both sides?
S = halves that
 you saw $\rightarrow 8$
$E=$ hal vies with a on the $\rightarrow 2$ other half
$S=$ marked dominoes,
whore marked domino is

$$
\begin{aligned}
& \text { lues } P(E)=\frac{2}{8} \cdot\left[\frac{1}{4}\right] \\
& \text { ald }
\end{aligned}
$$ domino with one side marked that could have been looked at

Dominoes

Question 3: Now your friend picks a random tile from the set, looks at it, and tells you that they have a six. What is the probability that your friend's tile is a double, with six on both sides?
$S=28$ dominoes $\rightarrow 28$
$E=$ doubles $\rightarrow(7)$
$F=$ dominoes with

$$
\begin{aligned}
P(E \mid F)=\frac{P(E \cap F)}{P(F)} & =\frac{1 / 28}{7 / 28} \\
& =1 / 7
\end{aligned}
$$

$$
\text { at least one } 6 \rightarrow 7
$$

Conditional probabilities: Simpson's Paradox

Which treatment is better?

A. Treatment A for all cases.
C. A for small and B for large.
B. Treatment B for all cases.
D. A for large and B for small.

Conditional probabilities: Simpson's Paradox

C. R. Charig, D. R. Webb, S. R. Payne, J. E. Wickham (29 March 1986). "Comparison of treatment of renal calculi by open surgery, percutaneous nephrolithotomy, and extracorporeal shockwave lithotripsy". Br Med J (Clin Res Ed) 292 (6524): 879-882. doi:10.1136/bmj.292.6524.879. PMC 1339981. PMID 3083922. cf. Wikipedia "Simpson's Paradox"

Summary

- Today, we studied conditional probability.
- Next time: How do we use probability to answer questions about random samples?

