$$
\text { SC } 40 A
$$

Theoretical Foundations of Data Science I

In This Video

- What is the probability of a random sample having a certain property?

Sampling

Sampling with replacement:

1. Draw one element uniformly at random from list.
2. Return the element to the list.
3. Repeat

Sampling without replacement:
same, except skip step 2
What does uniformly at random mean? each element equally likely

Sampling

Sampling with or without replacement:

- All samples are equally likely.
- Uniform distribution!
$P($ sample having a certain property $)=$

Sampling

Sampling with or without replacement:

- All samples are equally likely.
- Uniform distribution!

$$
P(\text { sample having a certain property })=\frac{\# \text { samples having property }}{\# \text { possible samples }}
$$

Practice Problems

$$
1,2, \ldots, 20
$$

Example 5. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random with replacement. What is the chance that a particular student is among the 5 selected students?

$$
\begin{array}{rll}
S=\text { sequences of length } 5 & \text { ex. } & 3,12,4,15,20 \\
\text { with entries in }\{1,2, \ldots, 20\} & 3,3,3,8,4
\end{array}
$$

Practice Problems

Part 1. Denominator. If you draw a sample of size 5 at random with replacement from a population of size 20 , how many different sequences of individuals could you draw?

$$
\begin{aligned}
& \text { \#seq in } S \\
& \text { ex.) } \frac{5}{\lambda}, \frac{10,5}{\pi}, 3,2 \\
& \text { any } \# 1,2 \ldots, 20\} 20 \text { options } \\
& \text { in } \\
& \Rightarrow 20 \text { options }
\end{aligned}
$$

Practice Problems

Part 2. Numerator. If you draw a sample of size 5 at random with replacement from a population of size 20 , how many different sequences of individuals include a particular
\#erson?
ex.) $\frac{6}{20}$

Practice Problems

Using the complement. If you draw a sample of size 5 at random with replacement from a population of size 20 , how many different sequences of individuals do not include a particular person?
\# seq in 5 that don't include 17

$$
\begin{aligned}
& \text { ex.) } \frac{16}{\uparrow}, \frac{12,14}{19}, 16,11 \text { options } \Rightarrow 19^{5} \\
& \{1, \ldots, 20\} \text { but not } 17 \\
& \Rightarrow 19 \text { options }
\end{aligned}
$$

Practice Problems

Example 5. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random with replacement. What is the chance that a particular student is among the 5 selected students?

Practice Problems

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

Practice Problems

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?
ex.) $5,3,2,12,14$ must be different
Which probability will be higher?
A. Probability of including a particular student when sampling with replacement.
B. Probability of including a particular student when sampling without replacement.
C. Both probabilities are the same.
$=$ sequences of length 5 with entries $\{1, \cdots, 20\}$ with no repeats from Theory Meets Data by Ani Adhikari, Chapter 4

Practice Problems

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different sequences of individuals could you draw?
\# seq in S

$$
\begin{aligned}
& \text { ex.) } 6,7, \frac{4}{\uparrow}, 12,3 \Rightarrow 20 \cdot 19 \cdot 18 \cdot 17 \cdot 16 \\
& 20 \\
& \text { 20 } \\
& \text { iptions } \\
& \text { Iq } \\
& \text { options }
\end{aligned}
$$

Practice Problems

Part 2．Numerator．If you draw a sample of size 5 at random without replacement from a population of size 20，how many different sequences of individuals include a particular）person？

$$
\begin{aligned}
& 17 \\
& \text { ex) } 17,6,5,14,20 \\
& 3,12,17,2,9 \\
& 17 \\
& \begin{array}{l}
\text { 画西二 } \\
\text { 二三一 }
\end{array} \\
& \text { 二二一一一正 }
\end{aligned}
$$

Practice Problems

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20 , how many different sequences of individuals do not include a particular person?

$$
\text { ex.) } \begin{aligned}
\frac{8,12}{\uparrow} \frac{14,16}{18} \frac{19}{17}, 1615 \\
19 \text { options options }
\end{aligned}>=19 \cdot 18 \cdot 17 \cdot 16 \cdot 150
$$

Practice Problems

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

$$
\begin{aligned}
& \text { prob(include } \left.\begin{array}{c}
17
\end{array}\right)=\frac{\# \text { include } 17}{\text { total } \#}=\frac{\text { total \# - \#don't include } 17}{\text { to tal \# }} \\
& =\frac{5 \cdot 29 \cdot 18 \cdot 17 \cdot 16}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16}=\frac{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16-19 \cdot 18 \cdot 17 \cdot 16 \cdot 15}{20 \cdot 19 \cdot 18 \cdot 17 \cdot 16} \\
& \left.=\frac{1}{4}\right]^{29 \cdot 18 \cdot 17 \cdot 1 / 6(20-15)}
\end{aligned}
$$

Summary

- When we sample uniformly, whether with or without replacement, each possible sample is equally likely.
- Probability questions become counting questions:

$$
P(\text { sample having a certain property })=\frac{\# \text { samples having property }}{\# \text { possible samples }}
$$

- Next time: combinatorics, or counting principles

