DSC 40A

Theoretical Foundations of Data Science I

In This Video

- Many probability questions can be solved by counting, or combinatorics.
- We'll learn how to count sequences and sets.

Sequences vs. Sets

Sequences	Sets
Order matters	Order does not matter
Repetitions allowed	No repetitions allowed
Elements listed in order	Elements listed in no particular order within curly braces
Ex: $2, 4, 5 \neq 4, 2, 5$	Ex: $\{2, 4, 5\} = \{4, 2, 5\}$
Ex: 2, 2, 2 \neq 2, 2	Ex: $\{2, 2, 2\} = \{2, 2\} = \{2\}$
Ex: 1, 3, 4 = 1, 3, 4	Ex: $\{1, 3, 4\} = \{1, 3, 4\}$

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: 1, 3, 4 = 1, 3, 4

A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?

A. 8¹⁰ C. 8!

B. 10⁸ D. 10*9*8*7*6*5*4*3

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: 1, 3, 4 = 1, 3, 4

How many ways to select a president, vice president, and secretary from a group of 8 people?

Sequences

Sequences

Order matters

Repetitions allowed

Elements listed in order

Ex: $2, 4, 5 \neq 4, 2, 5$

Ex: $2, 2, 2 \neq 2, 2$

Ex: 1, 3, 4 = 1, 3, 4

How many ways to select a president, vice president, and secretary from a group of 8 people?

Sets

There are 24 ice cream flavors. How many ways can you pick 2 different flavors?

- A. 24 C. 24*24
- B. 24*23 D. 12*23

Sets

Order does not matter

No repetitions allowed

Elements listed in no particular order within curly braces

Ex:
$$\{2, 4, 5\} = \{4, 2, 5\}$$

Ex:
$$\{2, 2, 2\} = \{2, 2\} = \{2\}$$

Ex:
$$\{1, 3, 4\} = \{1, 3, 4\}$$

Sets

How many ways to select a committee of 3 from a group of 8?

Sets

Order does not matter

No repetitions allowed

Elements listed in no particular order within curly braces

Ex:
$$\{2, 4, 5\} = \{4, 2, 5\}$$

Ex:
$$\{2, 2, 2\} = \{2, 2\} = \{2\}$$

Ex:
$$\{1, 3, 4\} = \{1, 3, 4\}$$

Permutations vs. Combinations

Permutations	Combinations
Order matters	Order does not matter
No repetitions allowed	No repetitions allowed
Counts the number of sequences of k distinct elements chosen from n possible elements	Counts the number of sets of size k chosen from n possible elements
$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$	$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$
How many ways to select a president, vice president, and secretary from a group of 8 people? P(8,3)	How many ways to select a committee of 3 from a group of 8? C(8,3)

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals could you draw?

Part 2. Numerator. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals include a particular person?

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20, how many different **sets** of individuals **do not** include a particular person?

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random **without replacement**. What is the chance that a particular student is among the 5 selected students?

Summary

- Sequences vs. sets
- When elements are distinct: permutations vs. combinations

$$P(n,k) = (n)(n-1)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

$$C(n,k) = \binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Next time: more examples