$$
\text { SC } 40 A
$$

Theoretical Foundations of Data Science I

In This Video

- Many probability questions can be solved by counting, or combinatorics.
- We'll learn how to count sequences and sets.

Sequences vs. Sets

Sequences lists/tuples	Sets collection of ements
Order matters	Order does not matter
Repetitions allowed	No repetitions allowed
Elements listed in order	Elements listed in no particular order within curly braces
Ex: $2,4,5 \neq 4,2,5$	Ex: $\{2,4,5\}=\{4,2,5\}$
Ex: $2,2,2 \neq 2,2$	Ex: $\{2,2,2\}=\{2,2\}=\{2\}$
Ex: $1,3,4=1,3,4$	Ex: $\{1,3,4\}=\{1,3,4\}$

Sequences

Sequences

Order matters $<$
Repetitions allowed
Elements listed in order

Ex: $\quad 2,4,5 \neq 4,2,5$
Ex: $\quad 2,2,2 \neq 2,2$
Ex: $1,3,4=1,3,4$

A UCSD PID starts with "A" then has 8 digits. How many UCSD PIDs are possible?
A. 8^{10}
B. 10^{8}
C. 8 !
D. $10 * 9^{*} 8^{*} 7 * 6 * 5 * 4 * 3$

Elements listed in order	
Ex: $2,4,5 \neq 4,2,5$	10 digits
Ex: $2,2,2 \neq 2,2$	
Ex: $1,3,4=1,3,4$	

Sequences

Sequences

Sets

There are 24 ice cream flavors. How many ways can you pick 2 different flavors? A. 24 B. $24 * 23$	Sets C. $24^{*} 24$	D. $12^{*} 23$
Order does not matter		
first: Count sequences		
No repetitions allowed		
Elements listed in no particular order		
within curly braces		

Sets

$$
k!=p(k, k)
$$

How many ways to select a committee
of 3 from a group of $8 ?$

$\#$ sets $=$	Sets
$\#$ sequence 5	
$\#$ orderings	

$=8 * 7$
Order does not matter

Permutations vs. Combinations

Permutations

Combinations

Order matters
No repetitions allowed
Counts the number of sequences of \boldsymbol{k} distinct elements chosen from n possible elements

$$
\underline{P}(n, k)=(\underline{n})(\underbrace{n-1}) \cdots(n-k+1)=\frac{n!}{(n-k)!}
$$

How many ways to select a president, vice president, and secretary from a group of 8 people?

Order does not matter
No repetitions allowed
Counts the number of sets of size \mathbf{k} chosen from n possible elements
'n choose $k^{\prime \prime}$
$C(n, k)=$
$-\binom{n}{k}=\frac{n!}{k!(n-k)!}$

How many ways to select a committee of 3 from a group of 8 ?

Sampling Without Replacement

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?
last time: sample space was Sequences today'. sample space will be sets
$S=$ sets of 5 students, chosen from 20

$$
\text { prob }\left(\begin{array}{c}
\text { student } \\
17 \text { in } \\
\text { sample }
\end{array}\right)=\frac{\text { \# sets include person } 17}{\text { \# sets of 5, chosen from } 20}
$$

from Theory Meets Data by Ani Adhikari, Chapter 4

Sampling Without Replacement

Part 1. Denominator. If you draw a sample of size 5 at random without replacement from a population of size 20 , how many different sets of individuals could you draw?

Sampling Without Replacement

Part 2. Numerator. If you draw a sample of size 5 at random without replacement from a population of size 20 , how many different sets of individuals include a particular person?
\# of sets of 5 , chosen from 20 , including person 17
Key: this is the same as \# of sets of 4 , chosen from the other 19

$$
=C(19,4)
$$

Sampling Without Replacement

Using the complement. If you draw a sample of size 5 at random without replacement from a population of size 20 , how many different sets of individuals do not include a particular person?

17
\# sets of size 5, chosen from 20 , not including 17

$$
=C(19,5)
$$

Sampling Without Replacement

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

$$
\begin{aligned}
& \text { prob }=\frac{\# \text { sets with } 17}{\text { total \#sets }}=\frac{\text { to rel \# sets - \# sets without } 17}{\text { total \# sets }} \\
& =\frac{C(19,4)}{C(20,5)}=\frac{C(20,5)-C(19,5)}{C(20,5)} \\
& =\frac{19!(4!+15!)}{20!/(5!* 18!)}=\frac{19!}{4!} \times \frac{5!}{20!}=\frac{5}{20}=\frac{1}{4} \\
& \text { from Theory Meets Data by uni Adhikari, Chapter } 4
\end{aligned}
$$

Summary

- Sequences vs. sets
- When elements are distinct: permutations vs. combinations

$$
\begin{aligned}
P(n, k) & =(n)(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!} \\
C(n, k) & =\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

- Next time: more examples

