$$
\text { SC } 40 A
$$

Theoretical Foundations of Data Science I

In This Video

- More examples of using combinatorics to solve probability questions.

Counting as a Tool for Probability
Example 7. What is the probability that a randomly generated bitstring of length 10 contains an equal number of zeros and ones?
five O's, five 1 's, 10 positions \qquad
Example 8. What is the probability that a randomly generated bitstring of length 10 is the string $0011001101 ?$

$$
10
$$

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!} \quad C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Counting as a Tool for Probability
Example 9. What is the probability that a fair coin flipped 10 times turns up an equal number of heads and tails?
set of portions for H's

$$
\begin{aligned}
& \text { H's } \leftarrow C(10,5) \\
& \left.C(10,5) \times\left(\frac{1}{2}\right)^{10}\right) \\
& \text { probability that a fair coin flip } \\
& 2^{10}
\end{aligned}
$$

$$
\text { different: } 6 H, 4 T
$$

$$
\begin{aligned}
& d+t(10,6)=C(10,4) \\
& C(1)
\end{aligned}
$$

general principle.

$$
C(n, k)=C(n, n-k)
$$

Example 10. What is the probability that a fair coin flipped 10 times turns up HHTTHHTTHT?

$$
\begin{aligned}
& \frac{1}{2^{10}}=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \ldots \times \frac{1}{2}=\left(\frac{1}{2}\right)^{10} \\
& P(n, k)=(n)(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!} \quad C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
\end{aligned}
$$

Counting as a Tool for Probability
Example 11. What is the probability that a biased coin with $\operatorname{Prob}(H)=\frac{1}{3}$ flipped 18 times turns up an equal number of heads and tails?

Example 12. What is the probability that a biased coin wit $\operatorname{Prob}(H)=\frac{1}{3}$ flipped 10 times turns up HHTTHHTTHT?

$$
P(n, k)=(n)(n-1) \ldots(n-k+1)=\frac{n!}{(n-k)!}
$$

$$
\left(\frac{1}{3}\right) *\left(\frac{1}{3}\right) *\left(\frac{2}{3}\right) *
$$

$$
=\left(\frac{1}{3}\right)^{5} *\left(\frac{2}{3}\right)^{5}
$$

$$
C(n, k)=\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

The Easy Way

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that a particular student is among the 5 selected students?

$$
\text { 2 ways: } \begin{aligned}
S & =\text { sequences } \\
S & =\text { sets }
\end{aligned}
$$

The Easy Way

Example 6. There are 20 students in a class. A computer program selects a random sample of students by drawing 5 students at random without replacement. What is the chance that particular student is among the 5 selected students?

Another way to think of sampling without replacement:

1. randomly shuffle all 20 students
2. take the first 5

Practice Problems

Example 13. You were one of $\underline{238}$ individuals who reported for jury duty. If 54 of these people will be assigned to a courtroom, what is the probability that you get assigned to a courtroom?
sample without replacement

$$
\frac{54}{238}<\text { easy way }
$$

another way: $S=$ sets of 54 , chosen from 238

$$
C(238,54) \leftarrow \text { denominator }
$$

Practice Problems

Example 13. You were one of 238 individuals who reported for jury duty. If 54 of these people will be assigned to a courtroom, what is the probability that you get assigned to a courtroom?

Practice Problems

Example 14. You were one of 238 individuals who reported for jury duty. Suppose 28 of these individuals are doctors. If 54 of these people will be assigned to a courtroom, what is the probability that exactly 5 doctors get assigned to a courtroom?

$$
\begin{aligned}
& S=\text { sets of sc } \\
& \text { individuals } \\
& \text { chosen from } 238 \\
& P(5 \text { doctors })=\frac{\# \text { sets in } S \text { with } 5 \text { doctors }}{\# \text { sets in } 5}=\frac{C(28,5) * C(210,49)}{C(238,54)},
\end{aligned}
$$

Practice Problems

Example 15. What is the probability that your five-card poker hand is a straight?

$$
\frac{A, 2,3,4,5,6,7,8,910 \mid J Q}{\Omega \backslash \backslash A,}, A
$$

$$
52 \text { cards }
$$

$$
\begin{aligned}
& 52 \text { cards } \\
& 4 \text { suits } \vee, \phi \propto 9
\end{aligned}
$$

$S=5$-card power hands = sets of 5 cards

$$
\operatorname{prob}(\text { straight })=\frac{\text { \#straight hands }}{\text { \#sets of } 5 \text { cards }}=\frac{10^{*} * 4^{5}}{C(52,5)}
$$

conshich numbers

Practice Problems

$$
A, 2,3,4,5,6,7,8,4,0,0, Q,, A
$$

Example 16. Suppose took four card as it is dealt, and you see that it is a Queen. What is the probability that your five-card hand is a straight?
$S=$ possible sets of 4 cards that can be dealt (among 51)

$$
\begin{aligned}
& \operatorname{Prob}(\text { straight })=\frac{\text { \# sets of } 4 \text { cards that make straight when paired }}{\text { with } Q} \\
& \text { which sets of } 4 \text { cards } \\
&=\frac{3 * 4^{4} \leqslant \text { which }}{\text { suits }} \\
& \hline(51,4)
\end{aligned}
$$

Summary

- Counting is a useful tool for probability.
- Sometimes there's an easy way!
- Next time: Bayes Theorem

