DSC 40A

Theoretical Foundations of Data Science I

In This Video

We'll define the Law of Total Probability and Bayes Theorem.

- You conduct a survey:
 - How did you get to campus today? Walk, bike, or drive?
 - Were you late?

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

What is the probability that a randomly selected person is late?

A. 24%

B. 30%

C. 45%

D. 50%

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Since everyone either walks, bikes, or drives,

P(Late AND Walk) + P(Late AND Bike) + P(Late AND Drive)

This is called the Law of Total Probability.

	Late	Not Late		
Walk	6%		=	30%
Bike	3%	7%		
Drive	36%	24%		

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Since everyone either walks, bikes, or drives,

P(Late AND Walk) + P(Late AND Bike) + P(Late AND Drive)

P(Late| = P(Late| Walk)*P(Walk) + P(Late| Bike)*P(Bike)+P(Late| Drive)*P(Drive)

Partitions

- A set of events E₁, E₂, ..., E_k is a partition of S if

 - $P(E_i \cap E_j) = 0$ for all i,j $P(E_1) + P(E_2) + ... + P(E_k) = 1$ Overlap

Partitions

Law of Total Probability

If A is an event and E₁, E₂, ..., E_k is a partition of S, then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$$

$$= \sum_{i=1}^{k} P(A \cap E_i)$$

Partitions £3

Law of Total Probability

If A is an event and E₁, E₂, ..., E_k is a partition of S, then

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$$

$$= \sum_{i=1}^{k} P(A \cap E_i)$$
from mult. rule or conditional prob.

 $P(A) = \underbrace{P(A \mid E_1) \cdot P(E_1) + \dots + P(A \mid E_k) \cdot P(E_k)}_{k}$ $= \underbrace{\sum_{i=1}^{k} P(A \mid E_i) \cdot P(E_i)}$

	Late	Not Late
Walk	6%	24%
Bike	3%	7%
Drive	36%	24%

Suppose someone is late. What is the probability that they walked? Choose the best answer.

- Close to 5%
- Close to 15%
- Close to 30%
- Close to 40%

$$\frac{6}{45} \approx 0.133 \approx 137$$

6 = 0.133 = 1370 P(walk late) = P(walk AND late)

- Suppose all you know is
 - P(Late) = 45%
 - \circ P(Walk) = 30%
 - P(Late|Walk) = 20%
- Can you still find P(Walk|Late)?

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A) * \underline{P(B|A)} = P(A \text{ and } B) = P(B) * \underline{P(A|B)}$$

Bayes' Theorem:

s' Theorem:
$$P(B|A) = \frac{P(A|B) * P(B)}{P(A) \leftarrow \text{can use | aw of }}$$

Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$P(A)*P(B|A) = P(A \text{ and } B) = P(B)*P(A|B)$$

Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$$= \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})}$$

not

$$P(B|A) = \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess?

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

$$P(B|A) = \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})}$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time**. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer.

- A. Close to 95%
- B. Close to 85%
- C. Close to 40%
- D. Close to 15%

$$P(B|A) = \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})}$$

A manufacturer claims that its drug test will detect steroid use 95% of the time. What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids.

Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

B: used steroids

$$P(B) = 0.10$$

 $P(\overline{B}) = 0.90$

$$P(B|A) \in ?$$

 $P(A|B) = 0.95$ $P(A|B) = 0.15$

$$P(B|A) = \frac{P(A|B) * P(B)}{P(B) * P(A|B) + P(\overline{B}) * P(A|\overline{B})} = \frac{0.95 * 0.1}{0.1 * 0.95 + 0.9 * 0.15} \approx 0.41$$

A manufacturer claims that its drug test will **detect steroid use 95% of the time.**What the company does not tell you is that 15% of all steroid-free individuals also test positive (the false positive rate). 10% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Solution:

B: used steroids

A: tested positive

Despite manufacturer's claims, only **41% chance** that cyclist used steroids.

Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)} \qquad \text{B = belonging to a certain class A = having certain features}$$

$$P(\underline{\text{class}}|\underline{\text{features}}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Summary

 When a set of events partitions the sample space, the law of total probability applies.

$$P(A) = P(A \cap E_1) + P(A \cap E_2) + ... + P(A \cap E_k)$$

= $\sum_{i=1}^{k} P(A \cap E_i)$

- Bayes Theorem says how to express P(B|A) in terms of P(A|B).
- Next time: independence and conditional independence