$$
\text { SC } 40 A
$$

Theoretical Foundations of Data Science I

## In This Video

- We'll define the Law of Total Probability and Bayes Theorem.


## Getting to Campus

- You conduct a survey:
- How did you get to campus today? Walk, bike, or drive?
- Were you late?

|  | Late | Not Late |
| :--- | :--- | :--- |
| Walk | $6 \%$ | $24 \%$ |
| Bike | $3 \%$ | $7 \%$ |
| Drive | $36 \%$ | $24 \%$ |

## Getting to Campus

|  | Late | Not Late |
| :--- | :--- | :--- |
| Walk | $6 \%$ | $24 \%$ |
| Bike | $3 \%$ | $7 \%$ |
| Drive | $36 \%$ | $24 \%$ |

What is the probability that a randomly selected person is late?
A. $24 \%$
B. $30 \%$
C. $45 \%$
D. $50 \%$

## Getting to Campus

|  | Late | Not Late |
| :--- | :--- | :--- |
| Walk | $6 \%$ | $24 \%$ |
| Bike | $3 \%$ | $7 \%$ |
| Drive | $36 \%$ | $24 \%$ |

- Since everyone either walks, bikes, or drives, $P($ Late $)=P($ Late AND Walk $)+P($ Late AND Bike $)+P($ Late AND Drive $)$
- This is called the Law of Total Probability.

Getting to Campus

|  | Late | Not Late |
| :--- | :--- | :--- |
| Walk | $6 \%$ | $24 \%$ |
| Bike | $3 \%$ | $7 \%$ |
| Drive | $36 \%$ | $24 \%$ |

Suppose someone tells you that they walked. What is the probability that they were late?
A. 6\%
B. $20 \%$
C. $25 \%$

$$
\begin{aligned}
& \text { pu that they walked. What is the } \\
& \text { ale? }(\text { late } / \text { walk } k) \\
& =\frac{P(\text { ate } \text { AND walk) })}{P(\text { walk })}
\end{aligned}
$$

D. $45 \%$

$$
P(\text { late } A M) \text { walk })=P(\text { walk }) \times P(\text { late } / \text { walk }) \frac{6 \%}{30 \%}=\frac{1}{5}
$$

## Getting to Campus

|  | Late | Not Late |
| :--- | :--- | :--- |
| Walk | $6 \%$ | $24 \%$ |
| Bike | $3 \%$ | $7 \%$ |
| Drive | $36 \%$ | $24 \%$ |

- Since everyone either walks, bikes, or drives, $P($ Late $)=P($ Late AND Walk $)+P($ Late AND Bike $)+P($ Late AND Drive $)$
$P($ Late $)=P($ Late $\mid$ Walk $) * P($ Walk $)+P(\text { Late } \mid \text { Bike })^{*} P($ Bike $)+P(\text { Late } \mid \text { Drive })^{*} P($ Drive $)$

Partitions

- A set of events $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of $S$ if
- $P\left(E_{i} \cap E_{j}\right)=0$ for all $i, j$ $\qquad$ mutually
- $P\left(E_{1}\right)+P\left(E_{2}\right)+\ldots+P\left(E_{k}\right)=1$ exclusive, ho overlap
every $s \in S$ is in exactly one of $E_{1}, \ldots, E_{k}$

Partitions


## Law of Total Probability

- If $A$ is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of $S$, then

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$



Law of Total Probability

- If $A$ is an event and $E_{1}, E_{2}, \ldots, E_{k}$ is a partition of $S$, then

$$
\begin{aligned}
& P(A)=\frac{P\left(A \cap E_{1}\right)}{k}+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
&=\sum_{i=1}^{k} P\left(A \cap E_{i}\right) \\
& \text { from multi. rule or } \\
& \text { the way, conditional prob. }
\end{aligned}
$$

- Written another way,

$$
\begin{aligned}
P(A) & =\underbrace{P\left(A \mid E_{1}\right) \cdot P\left(E_{1}\right)}+\ldots+P\left(A \mid E_{k}\right) \cdot P\left(E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \mid E_{i}\right) \cdot P\left(E_{i}\right)
\end{aligned}
$$

## Getting to Campus

|  | Late |  |
| :--- | :--- | :--- |
| Walk | $6 \%$ | Not Late |
| Bike | $3 \%$ | $24 \%$ |
| Drive |  | $7 \%$ |
|  |  | $45 \%$ |

Suppose someone is late. What is the probability that they walked?
Choose the best answer.
A. Close to $5 \%$
B. Close to $15 \%$
C. Close to $30 \%$
D. Close to $40 \%$

$$
\begin{aligned}
& \frac{6}{45} \approx 0.133 \approx 13 \% \\
& P(\text { walk } \mid \text { la } t e)=\frac{P(\text { walk AND |ate })}{P(\text { late })}
\end{aligned}
$$

Getting to Campus

- Suppose all you know is

$$
\begin{array}{ll}
\circ & P(\text { Late })=45 \% \\
\circ & P(\text { Walk })=30 \% \\
\circ & P(\text { Late } \mid \text { Walk })=20 \%
\end{array}
$$

- Can you still find $P($ Walk|Late $)$ ?

$$
\begin{aligned}
P(\text { Walk } \mid \text { Late }) & =\frac{P(\text { Walk AND Late })}{P(\text { Late })} \\
& =\frac{P(\text { Late } / \text { Walk }) * P(\text { Walk })}{P(\text { Late })}=\frac{0.2 \times 0.3}{0.45}
\end{aligned}
$$

## Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$
P(A) * P(B \mid A)=P(A \text { and } B)=P(B) * P(A \mid B)
$$

## Bayes' Theorem:

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(A) \leftarrow \text { can use law of }} \begin{aligned}
& \text { total prob }
\end{aligned}
$$

## Bayes' Theorem

Bayes' Theorem follows from the multiplication rule, or conditional probability.

$$
P(A) * P(B \mid A)=P(A \text { and } B)=P(B) * P(A \mid B)
$$

## Bayes' Theorem:



$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(A)}
$$

$$
=\frac{P(A \mid B) * P(B)}{P(B) * P(A \mid B)+P(\bar{B}) * P(A \mid \bar{B})} \mathrm{B}
$$

## Bayes' Theorem: Example

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(B) * P(A \mid B)+P(\bar{B}) * P(A \mid \bar{B})}
$$

A manufacturer claims that its drug test will detect steroid use $95 \%$ of the time. What the company does not tell you is that $15 \%$ of all steroid-free individuals also test positive (the false positive rate). 10\% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

What is your first guess?
A. Close to $95 \%$
B. Close to $85 \%$
C. Close to $40 \%$
D. Close to $15 \%$

## Bayes' Theorem: Example

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(B) * P(A \mid B)+P(\bar{B}) * P(A \mid \bar{B})}
$$

A manufacturer claims that its drug test will detect steroid use $95 \%$ of the time. What the company does not tell you is that $15 \%$ of all steroid-free individuals also test positive (the false positive rate). 10\% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

Now, calculate it and choose the best answer.
A. Close to $95 \%$
B. Close to $85 \%$
C. Close to $40 \%$
D. Close to $15 \%$

## Bayes' Theorem: Example

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{\substack{4 \\ \text { yser } \\ \text { steads test pos }}}=\frac{P(B) * B)+P(\bar{B}) * P(A \mid \bar{B})}{\text {. }}
$$

A manufacturer claims that its drug test will detect steroid use $95 \%$ of the time. What the company does not tell you is that $15 \%$ of all steroid-free individuals also test positive (the false positive rate). 10\% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

## Solution:

B: used steroids

## $P(B \mid A) \leftarrow ?$

$$
P(A \mid B)=0.95
$$

$$
P(A \mid \bar{B})=0.15
$$

$$
P(B)=0.10
$$

$$
P(\bar{B})=0.90
$$

## Bayes' Theorem: Example

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(B) * P(A \mid B)+P(\bar{B}) * P(A \mid \bar{B})}=\frac{0.95 * 0.1}{0.1 * 0.95+0.9 * 0.15} \approx 0.41
$$

A manufacturer claims that its drug test will detect steroid use $95 \%$ of the time. What the company does not tell you is that $15 \%$ of all steroid-free individuals also test positive (the false positive rate). 10\% of the Tour de France bike racers use steroids. Your favorite cyclist just tested positive. What's the probability that he used steroids?

## Solution:

B: used steroids
A: tested positive

Despite manufacturer's claims, only 41\% chance that cyclist used steroids.

## Preview: Bayes' Theorem for Classification

Bayes' Theorem is very useful for classification problems, where we want to predict a class based on some features.

$$
P(B \mid A)=\frac{P(A \mid B) * P(B)}{P(A)} \quad \begin{aligned}
& \mathrm{B}=\text { belonging to a certain class } \\
& \mathrm{A}=\text { having certain features }
\end{aligned}
$$

$$
P(\underline{\text { class }} \mid \underline{\text { features }})=\frac{P(\text { features } \mid \text { class }) * P(\text { class })}{P(\text { features })}
$$

## Summary

- When a set of events partitions the sample space, the law of total probability applies.

$$
\begin{aligned}
P(A) & =P\left(A \cap E_{1}\right)+P\left(A \cap E_{2}\right)+\ldots+P\left(A \cap E_{k}\right) \\
& =\sum_{i=1}^{k} P\left(A \cap E_{i}\right)
\end{aligned}
$$

- Bayes Theorem says how to express $P(B \mid A)$ in terms of $P(A \mid B)$.
- Next time: independence and conditional independence

