DSC 40A

Theoretical Foundations of Data Science I

Last Time

We defined Bayes' Theorem:

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

 Bayes' Theorem describes how to update the probability of one event given that another has occurred.

In This Video

- What does it mean for one event not to influence the probability of another?
- Independence and conditional independence.

Updating Probabilities

 Bayes' Theorem describes how to update the probability of one event given that another has occurred.

$$\underline{P(B|A)} = \underbrace{\frac{P(A|B) * \underline{P(B)}}{P(A)}}_{P(A)}$$

 Sometimes, P(B|A) = P(B). Knowing that A occurs doesn't change anything.

Independent Events

 A and B are independent events if one event occurring does not affect the chance of the other event occurring.

$$P(B|A) = P(B) P(A|B) = P(A)$$

Otherwise, A and B are dependent events./

If one of the above is true, must the other be true?

A. yes

B. not necessarily

Independent Events

 A and B are independent events if one event occurring does not affect the chance of the other event occurring.

$$P(B|A) = P(B)$$

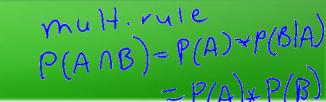
$$P(A|B) = P(A)$$
(onclude)

Using Bayes' Theorem, if one is true, then so is the other.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

$$P(A|B) = \frac{P(A|B) * P(B)}{P(A)}$$

Independent Events



A and B are independent events if

$$P(A \text{ and } B) = P(A) * P(B) \Rightarrow \text{if } P(A) = 0,$$

$$event, \text{ then } A, B \text{ event, the$$

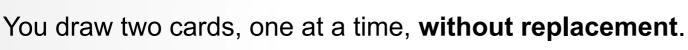
 This more general definition allows for the probability of A or B to be zero.

problem: if P(A)=0,
$$P(B|A) = P(A \text{ and } B)$$

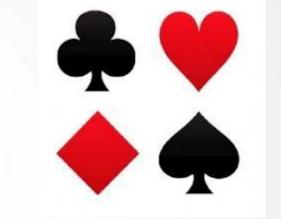
$$P(A) \leftarrow divida by zero sufficient$$

You draw two cards, one at a time, with replacement.

- A is the event that the first card is a heart.
- B is the event that the second card is a club.



- A is the event that the first card is a heart.
- B is the event that the second card is a club.



Are A and B independent?

A. yes in both cases

yes with replacement, no without replacement

C. no with replacement, yes without replacement

D. no in both cases

You draw one card from a deck of 52.

- A is the event that the card is a heart. P(A∩B) = P(A)
- B is the event that the card is a face card (J, Q, K)

Assuming Independence

- Sometimes we assume that events are independent to make calculations easier.
- Real-world events are almost never exactly independent, but may be close.

1% of UCSD students are data science majors. 25% of UCSD students eat avocado toast for breakfast. Assuming that being a DSC major and eating avocado toast for breakfast are independent:

a) What percentage of DSC majors eat avocado toast for breakfast?

b) What percentage of UCSD students are DSC majors who eat avocado toast for breakfast?

avocado toast for breakfast?
$$P(avo \cap DSC) = P(avo) + P(DSC) = 0.25\%$$

Conditional Independence

- Sometimes, events that are dependent become independent upon learning some new information.
- Or independent events can become dependent, given additional information.

Oops, you lost the King of Clubs! Draw one card from a deck of 51.

- A is the event that the card is a heart.
- B is the event that the card is a face card (J, Q, K).

Are A and B independent?

$$P(B|A) = \frac{3}{13}$$

 $P(B) = \frac{11}{51} > \text{not}$
same

Oops, you lost the King of Clubs! Draw one card from a deck of 51.

- A is the event that the card is a heart.
- B is the event that the card is a face card (J, Q, K).

- **♣**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, A
- **♠**: 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A

Now suppose you learn that the card is red. Are A and B independent given this new information?

$$\frac{6}{26} = \frac{3}{13}$$

cond. in

PC(ANB)(c) = P(Alc)*P(Blc)

Conditional Independence

Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

 Given that C occurs, this says that A and B are independent of one another.

Assuming Conditional Independence

- Sometimes we assume that events are conditionally independent to make calculations easier.
- Real-world events are almost never conditionally independent, but may be close.

Suppose that 80% of UCSD students like Harry Potter and 25% of UCSD students eat avocado toast for breakfast. What is the probability that a random UCSD student likes Harry Potter and eats avocado toast for breakfast, assuming that these events are conditionally independent given that a person is a UCSD student?

that a person is a UCSD student?
$$P(HP \land avo | UUSD) = P(HP \mid UCSD) + P(avo \mid UCSD)$$

$$= 80\% + 25\%$$

$$= 7.0\%$$

Independence vs. Conditional Independence

- Is it reasonable to assume conditional independence of
 - liking Harry Potter
 - eating avocado toast for breakfast
 given that a person is a UCSD student?
- Is it reasonable to assume independence of these events in

general, among all people?

Which assumptions do you think are reasonable?

- A. both
- B. conditional independence only
- C. independence (in general) only
- D. neither

Independence vs. Conditional Independence

 In general, there is no relationship between independence and conditional independence.

Summary

- Events are independent when knowledge of one event does not change the probability of the other event.
- Events that are not independent can be conditionally independent given new information (and the opposite is true).
- Next time: Solving the classification problem using Bayes'
 Theorem and an assumption of conditional independence.