DSC 40A

Theoretical Foundations of Data Science I

Last Time

Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

 Given that C occurs, this says that A and B are independent of one another.

In This Video

Using Bayes' Theorem to solve the classification problem

Classification

- Making predictions based on examples (training data)
- Response variable is categorical
- Categories are called classes
- Examples:
 - decide whether patient has kidney disease
 - identify handwritten digits
 - determine whether an avocado is ripe
 - predict whether credit card activity is fraudulent

Example

Color	Ripeness	You have a green-black avocado. Based on this data, would						
bright green	unripe	you predict that your avocado is ripe or unripe?						
green-black	ripe							
purple-black	ripe				1			
green-black	unripe	,	Which cla	ass would you predict?				
purple-black	ripe		_	ripe				
bright green	unripe		D. (unripe				
green-black	ripe							
purple-black	ripe							
green-black	ripe							
green-black	unripe							
purple-black	ripe							

Example

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	
purple-black	ripe	Strategy: Calculate two probabilities:
green-black	unripe	
purple-black	ripe	P(ripe green-black)
bright green	unripe	
green-black	ripe	P(unripe green-black)
purple-black	ripe	
green-black	ripe	Then choose the class according to the larger of these two
green-black	unripe	probabilities.
purple-black	ripe	

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

B = belonging to a certain class

A = having certain features

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Bayes' Theorem for Classification

Bayes' Theorem gives another strategy for predicting the class given features.

$$P(B|A) = \frac{P(A|B) * P(B)}{P(A)}$$

B = belonging to a certain class

A = having certain features

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

Can all be estimated from the training data

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	$P(\text{class} \text{features}) = \frac{1}{2}$
green-black	unripe	P(features)
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would
bright green	unripe	you predict that your avocado is ripe or unripe?
green-black	ripe	P(features class) * P(class)
purple-black	ripe	$P(\text{class} \text{features}) = \frac{1}{2}$
green-black	unripe	P(features)
purple-black	ripe	
bright green	unripe	
green-black	ripe	
purple-black	ripe	
green-black	ripe	
green-black	unripe	
purple-black	ripe	

Color	Ripeness	You have a green-black avocado. Based on this data, would			
bright green	unripe	you predict that your avocado is ripe or unripe?			
green-black	ripe	P(features class) * P(class)			
purple-black	ripe	P(c ass teat res) =			
green-black	unripe	P(features) = P(features)			
purple-black	ripe				
bright green	unripe	Shortcut: Both probabilities have same denominator. To			
green-black	ripe	find larger one, choose one with larger numerator.			
purple-black	ripe	P(ring Largen black)			
green-black	ripe	P(ripe green-black)			
green-black	unripe				
purple-black	ripe	P(unripe green-black)			

More Features

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	Strategy: Calculate two probabilities:
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	P(ripe firm, green-black, Zutano)
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	P(unripe firm, green-black, Zutano)
green-black	soft	Zutano	ripe	

green-black

purple-black

firm

medium

Hass

Hass

unripe

ripe

Then choose the class according to the

larger of these two probabilities.

green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	Problem: We have not seen an avocado
purple-black	soft	Hass	ripe	with all these features. Both probabilities
bright green	firm	Zutano	unripe	will be undefined.

P(ripe | firm, green-black, Zutano)

P(unripe | firm, green-black, Zutano)

You have a firm green-black Zutano avocado. Based on this data, would you Zutano unripe

Ripeness

ripe

ripe

ripe

ripe

unripe

Color

bright green

green-black

purple-black

green-black

green-black

purple-black

Softness

firm

soft

soft

soft

firm

medium

Variety

Zutano

Hass

Zutano

Hass

Hass

Ripeness

Color

Softness

Variety

You have a firm green-black Zutano

		•	•	Tod Have a mini groom black Zatano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	P(class features) = P(features class) * P(class)
purple-black	soft	Hass	ripe	P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	Solution: Use Bayes' Theorem, plus a
purple-black	soft	Hass	ripe	simplifying assumption, to calculate the
green-black	soft	Zutano	ripe	two numerators.
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

You have a firm green-black Zutano

class, the features are independent.

P(firm | ripe)*P(green-black | ripe)*P(Zutano | ripe)

P(firm, green-black, Zutano | ripe) =

avocado Rasad on this data would you

P(features)

bright green	TIrm	Zutano	unripe	avocado. Dased on triis data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	P(class footunes) = P(features class) * P(class)

P(class|leatures) purple-black soft Hass ripe bright green firm Zutano unripe Simplifying assumption: Within a given

ripe

ripe

ripe

ripe

unripe

Ripeness

Color

green-black

purple-black

green-black

green-black

purple-black

Softness

soft

soft

soft

firm

medium

Variety

Zutano

Hass

Zutano

Hass

Hass

Conditional Independence

Recall that A and B are independent if

$$P(A \text{ and } B) = P(A) * P(B)$$

A and B are conditionally independent given C if

$$P((A \text{ and } B)|C) = P(A|C) * P(B|C)$$

 Given that C occurs, this says that A and B are independent of one another.

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano
bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	P(class features) = P(features class) * P(class)
purple-black	soft	Hass	ripe	P(features)
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Ripeness

Color

Softness

Variety

You have a firm green-black Zutano

bright green	firm	Zutano	unripe	avocado. Based on this data, would you
green-black	medium	Hass	ripe	predict that your avocado is ripe or
purple-black	firm	Hass	ripe	unripe?
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	Assuming conditional independence of
bright green	firm	Zutano	unripe	features given the class, calculate
green-black	soft	Zutano	ripe	P(firm, green-black, Zutano unripe). A. 0
purple-black	soft	Hass	ripe	B. 1/4
green-black	soft	Zutano	ripe	C. 3/16
green-black	firm	Hass	unripe	D. 1 - (1/7*3/7*2/7)
purple-black	medium	Hass	ripe	

Color	Softness	Variety	Ripeness	You have a firm green-black Zutano avocado. Based on this data, would you predict that your avocado is ripe or unripe? $P({\rm class} {\rm features}) = \frac{P({\rm features} {\rm class}) * P({\rm class})}{P({\rm features})}$
bright green	firm	Zutano	unripe	
green-black	medium	Hass	ripe	
purple-black	firm	Hass	ripe	
green-black	medium	Hass	unripe	
purple-black	soft	Hass	ripe	
bright green	firm	Zutano	unripe	
green-black	soft	Zutano	ripe	
purple-black	soft	Hass	ripe	
green-black	soft	Zutano	ripe	
green-black	firm	Hass	unripe	
purple-black	medium	Hass	ripe	

Naive Bayes Algorithm

Bayes' Theorem shows how to calculate P(class | features).

$$P(\text{class}|\text{features}) = \frac{P(\text{features}|\text{class}) * P(\text{class})}{P(\text{features})}$$

- Rewrite the numerator, using the naive assumption of conditional independence of features given the class.
- Estimate each term in the numerator based on the training data.
- Select class based on whichever has the larger numerator.

Summary

- The Naive Bayes algorithm gives a strategy for classifying data according to its features.
- It relies on an assumption of conditional independence of the features.
- Next time: application to text classification