DST MOA
Theoretical Foundations of Data Science I

In This Video

Which prediction minimizes the mean error?

Recommended Reading

Course Notes: Chapter 1, Section 1

The Best Prediction

- We want the best prediction, h^{*}.
$>$ Goal: find h that minimizes the mean error:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

- This is an optimization problem.

Question

Can we use calculus to minimize R ?

$$
\begin{aligned}
& R(h)=\left(\frac{1}{n}\right)^{\text {Calculus: take derivatives et equal to zero, solve. }} \sum_{i=1}^{n}\left|h-y_{i}\right| \\
& R^{\prime}(h)=\frac{1}{n} \sum_{i=1}^{n} \frac{d}{d h}\left(\mid h-y_{i}\right) \\
& \begin{array}{c}
\text { problem } \\
\text { not differ- } \\
\text { nontiable } \\
\text { en cause }
\end{array} \\
& \text { nt be minimized with call. } \begin{array}{c}
\text { bess cusp } p
\end{array}
\end{aligned}
$$

Plotting the Mean Error

Plotting the Mean Error

Plotting the Mean Error

Plotting the Mean Error

1)continuous 2) made of line

Question

A local minimum occurs when the slope of a function goes from \qquad . Select all that apply.
A) positive to negative
(B) Negative to positive C) positive to zero D广 Negative to zero

local max local min

Goal

$>$ Find where slope of R goes from negative to non-negative.

Want a formula for the slope of R at h.

Sums of Linear Functions
Let

$$
f_{1}(x)=3 x+7 \quad f_{2}(x)=5 x-4 \quad f_{3}(x)=-2 x-8
$$

What is the slope of $f(x)=f_{1}(x)+f_{2}(x)+f_{3}(x)$?

$$
\begin{gathered}
3 x+5 x-2 x+c \\
6 x+c \\
\uparrow
\end{gathered}
$$

$$
\text { slope is } 6
$$

The Slope of the Mean Error
$R(h)$ is a sum of absolute value functions (times $\frac{1}{n}$):

$$
\begin{aligned}
& R(h)=\frac{1}{n}\left(\left|h-y_{1}\right|+\left|h-y_{2}\right|+\ldots+\left|h-y_{n}\right|\right) \\
& R(h)^{n}=\frac{1}{n} \sum_{i=1}^{n}\left|h-y_{i}\right| \\
& =\frac{1}{n}\left(\sum_{y_{i}\langle h}\left|h_{\cos }^{h-y_{i} \mid}\right|+\frac{\sum_{\left.y_{i}\right\rangle h}\left|h-y_{i j}\right|}{\left.\sum \mid h-y_{i}\right)}+\right.
\end{aligned}
$$

The Slope of the Mean Error

($\frac{1}{n}\left[\left(\#\right.\right.$ of $\left.y_{i}^{\prime} s<h\right)-\left(\#\right.$ of $\left.\left.y_{i}^{\prime} s>h\right)\right]$

Where the Slope's Sign Changes

The slope of R at h is:

$$
\frac{1}{n} \cdot[\left(\# \text { of } y_{i}^{\prime} s<h\right)-(\# \underbrace{\left(\# \text { of } y_{i}^{\prime} s>h\right)}]
$$

Question

Suppose that n is odd. At what value of h does the slope of R go from negative to positive?
A) $h=$ mean of y_{1}, \ldots, y_{n}
B) $h=$ median of y_{1}, \ldots, y_{n}
C) $h=$ mode of y_{1}, \ldots, y_{n}
median

Summary: The Median Minimizes the Mean Error

- Our problem was: find h^{*} which minimizes the mean error, $R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|$.
\Rightarrow The answer is: Median $\left(y_{1}, \ldots, y_{n}\right)$.
\Rightarrow The best prediction ${ }^{1}$ is the median.
- Next time: We consider a different measure of error that is differentiable.

