


In This Video

We’ve looked at mean error and mean squared error. How do
both of these ways of measuring the quality of a prediction fit
into a general framework?

Recommended Reading

Course Notes: Chapter 1, Section 2



A General Framework

I We started with the mean error:

R(h) = 1

n
∑
i=1

|yi − h|

I Then we introduced the mean squared error:

Rsq(h) =
1

n
∑
i=1

(yi − h)2

I They have the same form: both are averages of some
measurement that represents how different h is from the
data.



A General Framework

I Definition: A loss function L(h, y) takes in a prediction h
and a right answer, y, and outputs a number measuring
how far h is from y (bigger = further).

I The absolute loss:

Labs(h, y) = |y− h|

I The square loss:

Lsq(h, y) = (y− h)2



A General Framework

I Suppose that y1, . . . , yn are some data points, h is a
prediction, and L is a loss function. The empirical risk is
the average loss on the data set:

RL(h) =
1

n

n∑
i=1

L(h, yi)

I The goal of learning: find h that minimizes RL. This is
called empirical risk minimization (ERM).



Designing a learning algorithm using ERM

1. Pick a loss function.

2. Pick a way to minimize the average loss on the data
(empirical risk).

I Key Idea: The choice of loss function determines the
properties of the result and the difficulty of computing it.



Example: 0-1 Loss

1. Pick as our loss function the 0-1 loss:

L0,1(h, y) =
{
0, if h = y
1, if h ̸= y

2. Minimize empirical risk:

R0,1(h) =
1

n

n∑
i=1

L0,1(h, yi)

Question

Suppose y1, . . . , yn are all distinct. What is the value of
R0,1(y1)?

a) 0 b) 1
n c) n−1

n d) 1
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Minimizing Empirical Risk

R0,1(h) =
1

n

n∑
i=1

{
0, if h = yi
1, if h ̸= yi



Different Loss Functions Lead to Different Predictions

Loss Minimizer Outliers Differentiable Algorithm

Labs median insensitive no not simple

Lsq mean sensitive yes simple, fast

L0,1 mode insensitive no simple, fast

I The optimal predictions are all summary statistics that
measure the center of the data set in different ways.



Summary

I The mean error and the mean squared error fit into a
general framework of empirical risk minimization.

I By changing the loss function, we change which
prediction is considered the best.

I The optimal predictions each measure the center of the
data set.

I Next Time: We’ll design a more complicated loss function.


