


Last Time: Empirical Risk Minimization

I To learn, pick a loss function L and minimize the
empirical risk:

R(h) = 1

n

n∑
i=1

L(h, yi)

I Absolute loss: Labs(h, y) = |h− y| (gives the median)

I Square loss: Lsq(h, y) = (h− y)2 (gives the mean)

I Key Point: Tradeoffs to each loss function.



In This Video

We’ll design our own loss function. We’ll find that it’s hard to
minimize using the methods we’ve learned so far, which will
motivate a new approach to minimizing functions.

Recommended Reading

Course Notes: Chapter 1, Section 2



Loss Functions

I A loss function L(h, y) quantifies how “bad” a prediction is.

I Example: take h = 4 and y = 6.

I Absolute loss: Labs(h, y) = |4− 6| = 2

I Square loss: Lsq(h, y) = (4− 6)2 = 4



Plotting a Loss Function

I The plot of a loss function tells us how it treats outliers.

I Consider y fixed. Plot Labs(h, y) = |h− y|:



Plotting a Loss Function

I The plot of a loss function tells us how it treats outliers.

I Consider y fixed. Plot Lsq(h, y) = (h− y)2:



Question

Suppose L considers all outliers to be equally as bad.
What would it look like far away from y?

a) flat
b) rapidly decreasing
c) rapidly increasing



A very insensitive loss

I We’ll call this loss Lucsd because it doesn’t have a name.



Question

Which of these could be Lucsd(h, y)?

a) e−(h−y)2

b) 1− e−(h−y)2

c) 1− (h− y)2

d) 1− e−|h−y|



Adding a scale parameter

I Problem: Lucsd has a fixed scale.

I Won’t work for all data sets (e.g., salaries).

I Fix: add a scale parameter, σ:

Lucsd(h, y) = 1− e−(h−y)2/σ2



Empirical Risk Minimization

I We have salaries y1, . . . , yn.

I To find prediction, ERM says to minimize the mean loss:

Rucsd(h) =
1

n

n∑
i=1

Lucsd(h, yi)

=
1

n

n∑
i=1

[
1− e−(h−yi)2/σ2

]



Let’s plot Rucsd

I Recall:

Rucsd(h) =
1

n

n∑
i=1

[
1− e−(h−yi)2/σ2

]

I Once we have data y1, . . . , yn and a scale σ, we can plot
Rucsd(h)

I We’ll use full StackOverflow data (n = 1121)

I Let’s try several scales, σ.



Plot of Rucsd
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Plot of Rucsd
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Plot of Rucsd
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Plot of Rucsd
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Plot of Rucsd
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Plot of Rucsd
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Plot of Rucsd
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Minimizing Rucsd

I To make prediction, we find h∗ minimizing Rucsd(h).

I Rucsd is differentiable.

I To minimize: take derivative, set to zero, solve.



Step 1) Taking the derivative

dRucsd
dh =

d
dh

(
1

n

n∑
i=1

[
1− e−(h−yi)2/σ2

])



Step 2) Setting to zero and solving

I We found:

dRucsd
dh (h) = 2

nσ2

n∑
i=1

(h− yi) · e−(h−yi)2/σ2

I Now we just set to zero and solve for h:

0 =
2

nσ2

n∑
i=1

(h− yi) · e−(h−yi)2/σ2

I We can calculate derivative, but we can’t solve for h; we’re
stuck again.



Summary

I We created our own loss function, which was designed to
treat all outliers in much the same way.

I Our loss function was differentiable, but we still couldn’t
minimize it

I Next Time: We’ll invent a general algorithm called
gradient descent for minimizing differentiable functions.


