DSC 40A

Theoretical Foundations of Data Science I

Last Time: Empirical Risk Minimization

► To learn, pick a loss function L and minimize the empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- Absolute loss: $L_{abs}(h, y) = |h y|$ (gives the median)
- Square loss: $L_{sq}(h, y) = (h y)^2$ (gives the mean)
- Key Point: Tradeoffs to each loss function.

In This Video

We'll design our own loss function. We'll find that it's hard to minimize using the methods we've learned so far, which will motivate a new approach to minimizing functions.

Recommended Reading

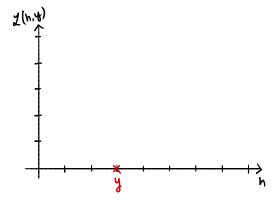
Course Notes: Chapter 1, Section 2

Loss Functions

- ightharpoonup A loss function L(h, y) quantifies how "bad" a prediction is.
- Example: take h = 4 and y = 6.
- ► Absolute loss: $L_{abs}(h, y) = |4 6| = 2$
- ► Square loss: $L_{sq}(h, y) = (4 6)^2 = 4$

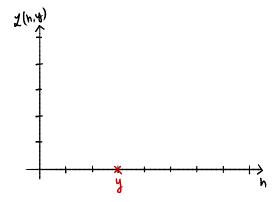
Plotting a Loss Function

- ▶ The plot of a loss function tells us how it treats outliers.
- ► Consider y fixed. Plot $L_{abs}(h, y) = |h y|$:



Plotting a Loss Function

- ► The plot of a loss function tells us how it treats outliers.
- ► Consider y fixed. Plot $L_{sq}(h, y) = (h y)^2$:

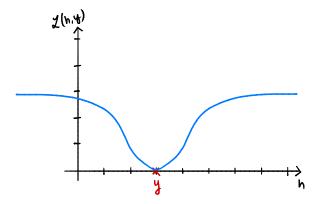


Question

Suppose L considers all outliers to be equally as bad. What would it look like far away from y?

- a) flat
- b) rapidly decreasing
- c) rapidly increasing

A very insensitive loss



ightharpoonup We'll call this loss L_{ucsd} because it doesn't have a name.

Question

Which of these could be $L_{ucsd}(h, y)$?

$$(h-y)^2$$

$$e^{-(h-y)^2}$$

c)
$$1 - (h - y)^2$$

Adding a scale parameter

- ightharpoonup Problem: L_{ucsd} has a fixed scale.
- Won't work for all data sets (e.g., salaries).
- Fix: add a scale parameter, σ :

$$L_{ucsd}(h, y) = 1 - e^{-(h-y)^2/\sigma^2}$$

Empirical Risk Minimization

- \triangleright We have salaries y_1, \ldots, y_n .
- ▶ To find prediction, ERM says to minimize the mean loss:

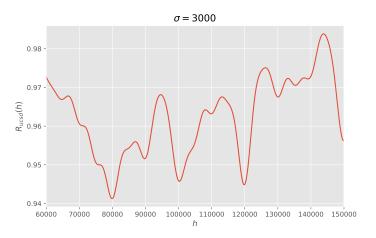
$$R_{\text{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{\text{ucsd}}(h, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h - y_i)^2 / \sigma^2} \right]$$

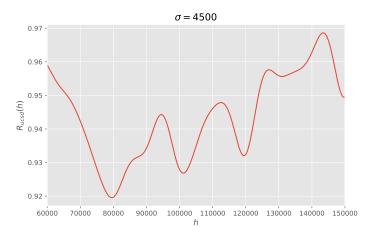
Let's plot Rucsd

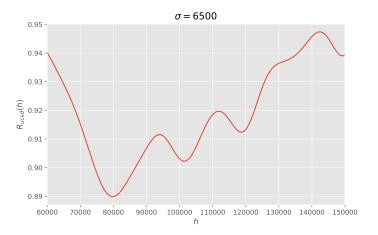
Recall:

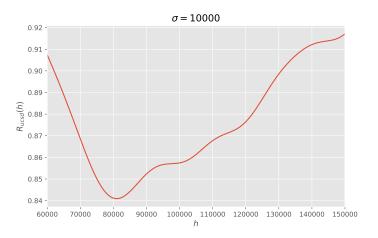
$$R_{\text{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h-y_i)^2/\sigma^2} \right]$$

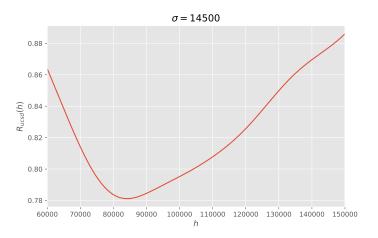
- Once we have data y_1, \ldots, y_n and a scale σ , we can plot $R_{\text{ucsd}}(h)$
- ▶ We'll use full StackOverflow data (n = 1121)
- Let's try several scales, σ .

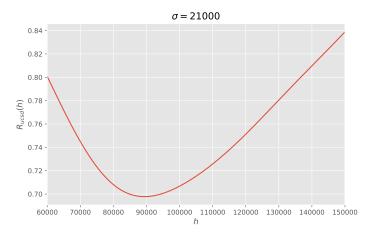


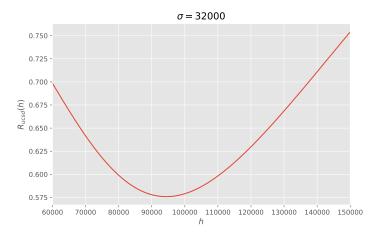












Minimizing Rucsd

▶ To make prediction, we find h^* minimizing $R_{ucsd}(h)$.

 $ightharpoonup R_{ucsd}$ is differentiable.

► To minimize: take derivative, set to zero, solve.

Step 1) Taking the derivative

$$\frac{dR_{\text{ucsd}}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(h-y_i)^2/\sigma^2} \right] \right)$$

Step 2) Setting to zero and solving

▶ We found:

$$\frac{dR_{\text{ucsd}}}{dh}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Summary

- We created our own loss function, which was designed to treat all outliers in much the same way.
- Our loss function was differentiable, but we still couldn't minimize it
- Next Time: We'll invent a general algorithm called gradient descent for minimizing differentiable functions.