PSC 40A Theoretical Foundations of Data Science I

Last Time: UCSD Loss

We invented a new loss function that treated all outliers roughly the same:

$$L_{\mathsf{ucsd}}(h, \mathbf{y}) = 1 - e^{-(h-\mathbf{y})^2/\sigma^2}$$

Our goal was to minimize the empirical risk:

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)$$

*R*_{ucsd}(*h*) was differentiable, but we couldn't solve for the minimizer.

In This Video

We'll invent a general algorithm called gradient descent for minimizing a differentiable function like $R_{ucsd}(h)$.

Recommended Reading

Course Notes: Chapter 1, Section 3

The General Problem

- **Given:** a differentiable function *R*(*h*)
- **Goal:** find the input h^* that minimizes R(h)

Meaning of the Derivative

We're trying to minimize a differentiable function R(h). Is calculating the derivative helpful?

•
$$\frac{dR}{dh}(h)$$
 is a function; it gives the slope at *h*.

Key Idea Behind Gradient Descent

- If the slope of R at h is positive then moving to the left decreases the value of R.
- ▶ i.e., we should **decrease** *h*

Key Idea Behind Gradient Descent

- If the slope of R at h is negative then moving to the right decreases the value of R.
- ▶ i.e., we should **increase** *h*

Key Idea Behind Gradient Descent

- Pick a starting place, h₀. Where do we go next?
- Slope at h_0 negative? Then increase h_0 .
- Slope at h_0 positive? Then decrease h_0 .
- ► This will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- Pick α to be a positive number. It is the **learning rate**.
- ▶ Pick a starting prediction, h_0 .

• On step *i*, perform update
$$h_i = h_{i-1} - \alpha \cdot \frac{dR}{dh}(h_{i-1})$$

Repeat until convergence (when h doesn't change much).


```
def gradient_descent(derivative, h, alpha, tol=1e-12):
"""Minimize using gradient descent."""
while True:
    h_next = h - alpha * derivative(h)
    if abs(h_next - h) < tol:
        break
    h = h_next
return h</pre>
```

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative:

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$
 $\frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Question Let $y_1 = -4$, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$. Pick $h_0 = 4$ and $\alpha = 1/4$. What is h_1 ? a) -1 b) 0 c) 1 d) 2

Solution

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Data values are -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = 1/4$. Find h_1 .

Summary

- We invented gradient descent, which repeatedly updates our prediction by moving in the opposite direction of the derivative.
- Next Time: We'll look at gradient descent in action.