DSC 40A

Theoretical Foundations of Data Science I

Last Time: UCSD Loss

We invented a new loss function that treated all outliers roughly the same:

$$L_{ucsd}(h, y) = 1 - e^{-(h-y)^2/\sigma^2}$$

Our goal was to minimize the empirical risk:

$$R_{\mathsf{ucsd}}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{\mathsf{ucsd}}(h, \underline{y_i})$$

 $Arr R_{ucsd}(h)$ was differentiable, but we **couldn't solve** for the minimizer.

In This Video

We'll invent a general algorithm called **gradient descent** for minimizing a differentiable function like $R_{ucsd}(h)$.

Recommended Reading

Course Notes: Chapter 1, Section 3

The General Problem

Given: a differentiable function R(h)

▶ Goal: find the input h^* that minimizes R(h)

Meaning of the Derivative

We're trying to minimize a differentiable function R(h). Is calculating the derivative helpful?

Key Idea Behind Gradient Descent

► If the slope of *R* at *h* is **positive** then moving to the **left** decreases the value of *R*.

▶ i.e., we should decrease h

Key Idea Behind Gradient Descent

- ► If the slope of *R* at *h* is **negative** then moving to the **right** decreases the value of *R*.
- ▶ i.e., we should increase h

Key Idea Behind Gradient Descent

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ► Slope at h_0 negative? Then increase h_0 .
- Slope at h_0 positive? Then decrease h_0 .
- This will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- ightharpoonup Pick α to be a positive number. It is the **learning rate**.
- \triangleright Pick a starting prediction, h_0 .
- On step *i*, perform update $h_i = h_{i-1} \alpha \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).


```
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        h_next = h - alpha * derivative(h)
        if abs(h next - h) < tol:</pre>
```

break
h = h next

return h

Example: Minimizing Mean Squared Error

Recall the mean squared error and its derivative.

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2$$

$$\frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$

Question

Let $y_1 = -4$, $y_2 = -2$, $y_3 = 2$, $y_4 = 4$.

Pick $h_0 = 4$ and $\alpha = 1/4$. What is h_1 ?

- a) -1
- b) (
- c) ·
- d) 2

Solution

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (h - y_i)^2 \qquad \frac{dR_{sq}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$$
Data values are -4 , -2 , Pick $h_0 = 4$ and $\alpha = 1/4$. Find h_1 .

Summary

We invented gradient descent, which repeatedly updates our prediction by moving in the opposite direction of the derivative.

Next Time: We'll look at gradient descent in action.