DST MOA
Theoretical Foundations of Data Science I

In This Video

The optimal prediction h^{*} that minimizes $R(h)$ is a measure of center. What is the meaning of the value of $R\left(h^{*}\right)$?

Recommended Reading

Course Notes: Supplement 1

General Approach

- We start with a loss function $L(h, y)$.
- Then we minimize the empirical risk:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

\Rightarrow The input h^{*} that minimizes $R(h)$ is some measure of the center of the data set.

- The minimum output $R\left(h^{*}\right)$ represents some measure of the spread, or variation, in the data set.

Absolute Loss

The empirical risk for the absolute loss is

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

$\Rightarrow R(h)$ is minimized at $h^{*}=$ median $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Absolute Loss

The empirical risk for the absolute loss is

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-h\right|
$$

$\Rightarrow R(h)$ is minimized at $h^{*}=$ median $\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Therefore, the minimum value of $R(h)$ is

$$
\begin{aligned}
R\left(h^{*}\right) & =R\left(\operatorname{median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& =\frac{1}{n} \sum_{i=1}^{n}\left|y_{i}-\operatorname{median}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right| .
\end{aligned}
$$

Mean Absolute Deviation from the Median

- The minimium value of $R(h)$ is the mean absolute deviation from the median.

2

$$
\left.\frac{1}{n} \sum_{i=1}^{n} y_{i}-\operatorname{median}\left(y_{1}, y_{2}, \ldots, y_{n}\right) \right\rvert\,
$$

- It measures how far each data point is from the median, on average.

Question

For the data set $2,3,3,4$, what is the mean absolute deviation from the median?
a) 0
b) $\frac{1}{2}$
c) 1
d) 2

Square Loss

The empirical risk for the square loss is

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2} .
$$

$\Rightarrow R_{\mathrm{sq}}(h)$ is minimized at $h^{*}=\operatorname{mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.

Square Loss

The empirical risk for the square loss is

$$
R_{\mathrm{sq}}(h)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-h\right)^{2} .
$$

$\Rightarrow R_{\mathrm{sq}}(h)$ is minimized at $h^{*}=\operatorname{mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
\Rightarrow Therefore, the minimum value of $R_{\mathrm{sq}}(h)$ is

$$
\begin{aligned}
& R_{\mathrm{sq}}\left(h^{*}\right)=R_{\text {sa }}\left(\operatorname{mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right) \\
& \text { average squared deviations } \\
& =\frac{1}{n} \sum_{i=1}^{n} y_{i}-y_{i} \operatorname{mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)
\end{aligned}
$$

Variance

- The minimium value of $R_{\text {sq }}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$$
\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\operatorname{mean}\left(y_{1}, y_{2}, \ldots, y_{n}\right)\right)^{2}
$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

0-1 Loss

- The empirical risk for the 0-1 loss is

$$
R_{0,1}(h)=\frac{1}{n} \sum_{i=1}^{n} \begin{cases}0, & \text { if } h=y_{i} \\ 1, & \text { if } h \neq y_{i}\end{cases}
$$

This is simply a count of the number of data points not equal to h.
$\Rightarrow R_{0,1}(h)$ is minimized at $h^{*}=\operatorname{mode}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$.
\Rightarrow Therefore, $R_{0,1}\left(h^{*}\right)$ is a count of the number of data points not equal to the mode.

A Poor Way to Measure Spread

- The minimium value of $R_{0,1}(h)$ is the number of data points not equal to the mode.
- Higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

A Poor Way to Measure Spread

- The minimium value of $R_{0,1}(h)$ is the number of data points not equal to the mode.
- Higher value means less of the data is clustered at the mode.

- Just as the Imode is a very simplistic way to measure the center of the data this is a very crude way toxeasure spread.

Question

For two different data sets, does it make sense say the data set with more data points not equal to the mode is more spread out?

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these risk runctions are various measures of spread.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

