PSC 40A Theoretical Foundations of Data Science I

In This Video

How can we make more informed predictions based on attributes of the individuals in our data set?

Recommended Reading

Course Notes: Chapter 2, Section 1

How do we predict someone's salary?

- ► Gather salary data, find prediction that minimizes risk.
- So far, we haven't used any information about the person.
- How do we incorporate, e.g., years of experience into our prediction?

Features

A feature is an attribute – a piece of information.

- Numerical: age, height, years of experience
- Categorical: college, city, education level
- **Boolean:** knows Python?, had internship?

Variables

- The features, x, that we base our predictions on are called predictor variables.
- The quantity, y, that we're trying to predict based on these features is called the response variable.
- We'll start by predicting salary based on years of experience.

Prediction Rules

- We believe that salary is a function of experience.
- ▶ I.e., there is a function *H* so that:

salary \approx *H*(years of experience)

- H is called a hypothesis function or prediction rule.
- **Our goal**: find a good prediction rule, *H*.

Example Prediction Rules

 H_1 (years of experience) = $50,000 + 20,000 \times$ (years of experience)

 $H_2(years of experience) = \$60,000 \times 1.05^{(years of experience)}$

 H_3 (years of experience) = $100,000 - 5,000 \times$ (years of experience)

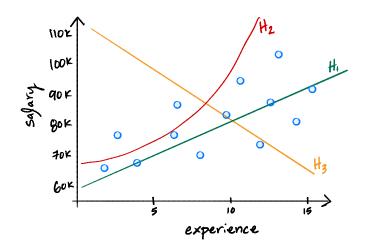
Comparing predictions

- How do we know which is best: H_1 , H_2 , H_3 ?
- We gather data from n people. Let x_i be experience, y_i be salary:

$$\begin{array}{cccc} (\mathsf{Experience}_1, \mathsf{Salary}_1) & (x_1, y_1) \\ (\mathsf{Experience}_2, \mathsf{Salary}_2) & & (x_2, y_2) \\ & & & & \\ & & & & \\ (\mathsf{Experience}_n, \mathsf{Salary}_n) & & & (x_n, y_n) \end{array}$$

See which rule works better on data.

Example



Quantifying the error of a prediction rule H

- Our prediction for person *i*'s salary is $H(x_i)$
- ► The **absolute error** in this prediction:

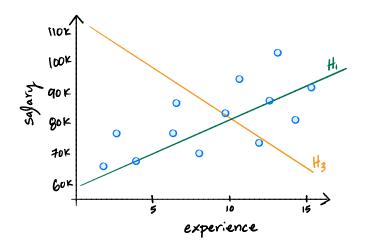
$$|H(\mathbf{x}_i) - \mathbf{y}_i|$$

▶ The **mean absolute error** of *H*:

$$R_{abs}(H) = \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Smaller the mean absolute error, the better the prediction rule.

Mean Absolute Error



Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
- ▶ That is, *H*^{*} should be the function that minimizes

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Finding the best prediction rule

- ▶ **Goal:** out of all functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
- ▶ That is, *H*^{*} should be the function that minimizes

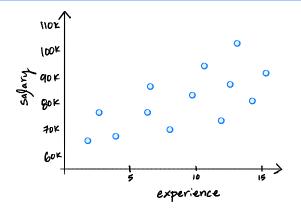
$$R(H) = \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

There are two problems with this.

Question

Given the data below, is there a prediction rule *H* which has **zero** mean absolute error?

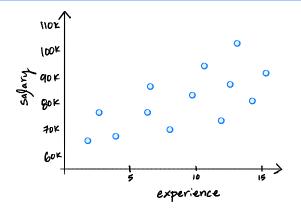
a) yes b) no



Question

Given the data below, is there a prediction rule *H* which has **zero** mean absolute error?

a) yes b) no



Problem #1

- ▶ We can make mean absolute error very small, even zero!
- But the function will be weird.
- This is called overfitting.
- Remember our real goal: make good predictions on data we haven't seen.

Solution

- Don't allow *H* to be just any function.
- Require that it has a certain form.
- Examples:
 - Linear: $H(x) = w_1 x + w_0$
 - Quadratic: $H(x) = w_2 x^2 + w_1 x + w_0$
 - Exponential: $H(x) = w_0 e^{w_1 x}$
 - Constant: $H(x) = w_0$

Finding the best linear prediction rule

- ▶ **Goal:** out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
- ▶ That is, *H*^{*} should be the linear function that minimizes

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

Finding the best linear prediction rule

- ▶ **Goal:** out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean absolute error.
- ▶ That is, *H*^{*} should be the linear function that minimizes

$$R(H) = \frac{1}{n} \sum_{i=1}^{n} |H(x_i) - y_i|$$

There is still a problem with this.

Problem #2

It is hard to minimize the mean absolute error:¹

$$\frac{1}{n}\sum_{i=1}^{n}|H(x_i)-y_i|$$

- Not differentiable!
- What can we do?

¹Though it can be done with linear programming.

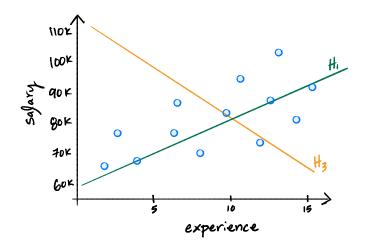
Quantifying the error of a prediction rule H

Use the mean squared error (MSE) instead:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

► Is differentiable!

Mean Squared Error



Our Goal

- ▶ Out of all linear functions $\mathbb{R} \to \mathbb{R}$, find the function H^* with the smallest mean squared error.
- That is, H* should be the linear function that minimizes

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (H(x_i) - y_i)^2$$

- This problem is called least squares regression.
- Next Time: We find the linear prediction rule H* that minimizes the mean squared error.