
DSC 40A - Extra Practice for Final Part 1
Spring 2023

Problem 1. Sloped Mean

Suppose you have a data set y1, y2, . . . , yn with at least three values, n ≥ 3, and the values are arranged
such that y1 ≤ y2 ≤ · · · ≤ yn.

We know from class that the mean of the data minimizes mean squared error,

Rsq(h) =

n∑
i=1

(h− yi)
2.

Define a new function that weights larger data points less heavily:

S(h) =

(
n−2∑
i=1

(h− yi)
2

)
+ 0.5 · (h− yn−1)

2 + 0.1 · (h− yn)
2.

a) What value of h minimizes S(h)? We’ll call the value of h that minimizes S(h) the sloped mean,
since the coefficients of the data values decrease for larger data.

Solution:

h =

(
n−2∑
i=1

yi

)
+ 0.5 · yn−1 + 0.1 · yn

n− 1.4

We can prove this using calculus.

S′(h) =

(
n−2∑
i=1

2 · (h− yi)

)
+ 2 · 0.5 · (h− yn−1) + 2 · 0.1 · (h− yn)

0 = 2 ·

((
n−2∑
i=1

(h− yi)

)
+ 0.5 · (h− yn−1) + 0.1 · (h− yn)

)

0 =

(
n−2∑
i=1

(h− yi)

)
+ 0.5 · (h− yn−1) + 0.1 · (h− yn)

0 = (n− 2) · h−

(
n−2∑
i=1

yi

)
+ 0.5 · h− 0.5 · yn−1 + 0.1 · h− 0.1 · yn

(n− 2) · h+ 0.5 · h+ 0.1 · h =

(
n−2∑
i=1

yi

)
+ 0.5 · yn−1 + 0.1 · yn

h · (n− 1.4) =

(
n−2∑
i=1

yi

)
+ 0.5 · yn−1 + 0.1 · yn

h =

(
n−2∑
i=1

yi

)
+ 0.5 · yn−1 + 0.1 · yn

n− 1.4

We know that this critical point corresponds to a minimum because S(h) is a quadratic with a
positive leading coefficient, so it’s an upward-facing parabola.
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b) Which do you think is a better hypothesis, the mean or the sloped mean? Is your answer always the
same, or does it depend on some property of the data set? Give an example of when you might prefer
to use the sloped mean, and when you might prefer the (regular) mean.

Solution: Our answer depends on the shape and size of our dataset and whether we think
extreme values are important. For example, for very small data sets, say data sets of size n = 3,
it’s almost always better to use the mean over the sloped mean since the sloped mean weights
the smallest data point as way more important than the other two, meaning your prediction is
based primarily on a single value.

The sloped mean might be a better hypothesis if the maximum value for the dataset is a large
outlier. In this case, by using the sloped mean, we reduce the effect of this outlier in our predic-
tions.

For other data sets, however, we may not want to devalue outliers. If there are a lot of outliers,
rather than just one or two, or if outliers exist in our data set for good reason, then we should
probably still incorporate them in the determination of our hypothesis as we would any other
value. For example, if our data set describes the daily rainfall in San Diego, in inches, we would
expect that most of the values in our data set would be zero, but it would not be a good idea to
ignore the highest value in the data set, since that day contributed a lot to the annual rainfall,
and ignoring it when calculating the average daily rainfall would paint a picture of even less
rainfall than in reality.

Problem 2. Which is bigger? By how much?

Given a data set y1 ≤ y2 ≤ · · · ≤ yn, define the following empirical risk functions:

Rabs(h) =
1

n

n∑
i=1

|yi − h| Rsq(h) =
1

n

n∑
i=1

(yi − h)2

Parts (a), (b), and (c) below concern Rabs. Parts (d) and (e) concern Rsq.

a) For an arbitrary c with c < c+1 < y1, how does Rabs(c) compare to Rabs(c+1)? Can you determine
which is bigger, and by how much?

Solution: Rabs(c) > Rabs(c+ 1).

Given y1 ≤ y2 ≤ · · · ≤ yn, and c < c + 1 < y1, we can say c and c + 1 are smaller than every
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point in the data set. Therefore, |yi − c| = yi − c and |yi − (c+ 1)| = yi − (c+ 1).

Rabs(c)−Rabs(c+ 1) =
1

n

n∑
i=1

|yi − c| − 1

n

n∑
i=1

|yi − (c+ 1)|

=
1

n

(
n∑

i=1

yi − c−
n∑

i=1

yi − (c+ 1)

)

=
1

n

(
n∑

i=1

(yi − c)− (yi − (c+ 1))

)

=
1

n

(
n∑

i=1

1

)

=
1

n
· n

= 1

This says that Rabs(c) is exactly 1 larger than Rabs(c+ 1).

Another way to do this problem is to notice that when we start with a c that is sufficiently to
the left of all data points and move it to the right by one unit, its distance from each data point
decreases by one unit. So the total distance to all data points decreases by n units, or the average
distance to all data points decreases by 1 unit.

b) For an arbitrary c with yn < c < c+2, how does Rabs(c) compare to Rabs(c+2)? Can you determine
which is bigger, and by how much?

Solution: Rabs(c) < Rabs(c+ 2).

Given y1 ≤ y2 ≤ · · · ≤ yn, and yn < c < c+2, we can say c and c+2 are larger than every point
in the data set. Therefore, |yi − c| = c− yi and |yi − (c+ 2)| = c+ 2− yi.

Rabs(c+ 2)−Rabs(c) =
1

n

n∑
i=1

|yi − (c+ 2)| − 1

n

n∑
i=1

|yi − c|

=
1

n

(
n∑

i=1

c+ 2− yi −
n∑

i=1

c− yi

)

=
1

n

(
n∑

i=1

(c+ 2− yi)− (c− yi)

)

=
1

n

(
n∑

i=1

2

)

=
1

n
· 2n

= 2

This says that Rabs(c+ 1) is exactly 2 larger than Rabs(c).

Another way to do this problem is to notice that when we start with a c that is greater than all
data points and move it over to the right by two units, its distance from each data point increases
by two units. So the total distance to all data points increases by 2n units, or the average distance
to all data points increases by 2 units.
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c) Suppose n = 10. For an arbitrary c with y3 < c < c+1 < y4, how does Rabs(c) compare to Rabs(c+1)?
Can you determine which is bigger, and by how much?

Solution: Rabs(c) > Rabs(c+ 1).

For any choice of h between y3 and y4, there are 3 data points that are smaller than h and 7
data points that are larger than h. Therefore, using the formula for the slope of Rabs(h) that we
derived in class,

1

n
(#yi < h−#yi > h) ,

the slope of Rabs(h) at any h between y3 and y4 is 1
10 (3− 7) = −0.4. Since y3 < c < c+ 1 < y4,

the slope of −0.4 for this portion of the graph means that Rabs(c) is exactly 0.4 units larger than
Rabs(c+ 1).

d) For an arbitrary c with c < y1, how does Rsq(c) compare to Rsq(c− 1)? Can you determine which is
bigger, and by how much?

Solution: Rsq(c− 1) > Rsq(c).

Notice that c−1 and c are both smaller than y1 so they are smaller than the mean of y1, y2, . . . , yn.
This means both c and c + 1 are to the left of the vertex on an upward-facing parabola, which
means the graph is decreasing here. Therefore, Rsq(c − 1) > Rsq(c). As before, we cannot
determine how much they differ by because it depends on the data set and the value of c.

e) For an arbitrary c with c > yn, how does Rsq(c) compare to Rsq(c+ 1)? Can you determine which is
bigger, and by how much?

Solution: Rsq(c) < Rsq(c+ 1).

Notice that c and c+1 are both larger than yn so they are larger than the mean of y1, y2, . . . , yn.
This means both c and c+ 1 are to the right of the vertex on an upward-facing parabola, which
means the graph is increasing here. Therefore, Rsq(c) < Rsq(c + 1). We cannot determine how
much Rsq(c) is less than Rsq(c + 1) because it depends on the data set and the value of c. In
other words, if we look at pairs of points on a parabola that are equally spaced horizontally, their
vertical spacing will not all be the same. It depends on where on the parabola they fall.

Problem 3. Matrix, Vector, Scalar, or Nonsense?

Suppose M is an m×n matrix, v is a vector in Rn, and s is a scalar. Determine whether each of the following
quantities is a matrix, vector, scalar, or nonsense (undefined).

a) Mv

Solution: This is a vector in Rm.

b) vM

Solution: This is nonsense. v has dimensions n × 1 and M has dimensions m × n. Since the
inner dimensions don’t match, they can’t be multiplied like this.
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c) v2

Solution: This is nonsense. We can’t square a vector because the dimensions don’t work out to
multiply a vector by itself. The closest thing we have to this is taking the dot product of a vector
with itself, which squares each component and sums them.

d) MTM

Solution: This is a matrix, with dimensions n× n.

e) MMT

Solution: This is a matrix, with dimensions m×m.

f) vTMv

Solution: This is nonsense because vT has dimensions 1 × n and M has dimensions m × n so
the inner dimensions don’t match.

g) (sMv) · (sMv)

Solution: This is a scalar. Mv is a vector, as we saw in part (a), so sMv is also a vector. This
is the dot product of a vector with itself, which is a scalar.

h) (svTMT )T

Solution: This is a vector in (R)m. vT has dimensions 1× n and MT has dimensions n×m so
svTMT has dimensions 1×m and its transpose has dimensions m× 1.

Another way to think about this is to use the property of transposes that says the transpose of a
product is the product of the transposes in the opposite order. Since a scalar is its own transpose,
(svTMT )T = sMv. We know Mv is a vector in Rm from part (a), so a scalar multiple of it is
also a vector in Rm.

i) vTMTMv

Solution: This is a scalar, which we can figure out by looking at the dimensions of each of the
components from left to right: ×n, n×m, m× n, and n× 1.

Alternatively, we can rewrite vTMT = (Mv)T , so that vTMTMv = (Mv)T (Mv), which is the
dot product of the vector Mv with itself. Therefore, the result is a scalar.

j) vvT +MTM

Solution: This is a matrix, with dimensions n × n. Since v has dimensions n × 1 and vT has
dimensions 1×n, the product vvT has dimensions n×n. We already saw in part (d) that MTM
is a matrix with dimensions n× n, so we can add two matrices with the same dimensions.
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Problem 4. Orthogonality

a) Is it possible for a vector to be orthogonal to itself?

Solution: It is possible, but only if the vector is the zero vector. For a vector v⃗ =


v1
v2
...
vn

 to be

orthogonal to itself, that would require v⃗ · v⃗ =

n∑
i=1

v2i = 0. Since squares are non-negative, the

only way for this sum to total 0 is for each term of the sum to be 0, which means v⃗ is the zero
vector.

b) Show that if u⃗ is orthogonal to both v⃗ and w⃗, then u⃗ is also orthogonal to any linear combination of
v⃗ and w⃗, αv⃗ + βw⃗.

Solution: Suppose u⃗ is orthogonal to both v⃗ and w⃗. By the definition of orthogonality, this
means u⃗T v⃗ = 0 and u⃗T w⃗ = 0. Then,

u⃗T (αv⃗ + βw⃗) = u⃗Tαv⃗ + u⃗Tβw⃗)

= αu⃗T v⃗ + βu⃗T w⃗)

= α ∗ 0 + β ∗ 0
= 0,

which means u⃗ is orthogonal to any linear combination of v⃗ and w⃗.

c) Show that if AT b⃗ = 0, then b⃗ is orthogonal to the column space of A, which is the space of all linear
combinations of the columns of A.

Solution: Notice that the columns of A are the rows of AT . Since AT b⃗ = 0, this means the dot
product of b⃗ with each row of AT equals 0, as matrix-vector multiplication involves taking the
dot product of the vector with each row of the matrix. This says b⃗ is orthogonal to each row of
AT , or equivalently, to each column of A. Using the result of the previous part, if b⃗ is orthogonal
to the columns of A, then it is also orthogonal to linear combinations of the columns of A.

Problem 5. Regression

Suppose you have a dataset
{(x1, y1), (x2, y2), . . . , (xn, yn)}

where the standard deviation of the x-values, SD(x), is twice the standard deviation of the y-values, SD(y).
Let

y = a+ bx

be the regression line with x as the predictor variable and y as the response variable. Let

x = c+ dy

be the regression line with y as the predictor variable and x as the response variable. Express b in terms
of d.
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Solution: Using the formula for the slope of the regression line we have

b =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2

=

n∑
i=1

(xi − x)(yi − y)

n ∗ V ar(x)
n∑

i=1

(xi − x)(yi − y)

n ∗ (SD(x))2

Interchanging the roles of x and y gives us a formula for d as well:

d =

n∑
i=1

(xi − x)(yi − y)

n ∗ (SD(y))2
.

Since the expression for b and the expression for d have the same numerator, we can solve each expression
for that numerator and set them equal to get a relationship between b and d, which we can then solve
to get b in terms of d as desired.

b ∗ n ∗ (SD(x))2 = d ∗ n ∗ (SD(y))2

b = d ∗ (SD(y))2

(SD(x))2

Since we are told that SD(x) = 2 ∗SD(y), this means (SD(x))2 = 4 ∗ (SD(y))2 and so the relationship
simplifies to

b =
d

4
.

Problem 6. Farmfluencer

Billy the avocado farmer heard about the success of 72 year-old Gerald Stratford’s viral gardening videos on
Twitter and Instagram. After witnessing Gerald turn into the so-called King of Big Veg overnight, Billy is
feeling inspired to up his social media game (he’s also feeling a little bit jealous).

Billy is new to Instagram and is trying to understand how people gain followers. In particular, he wants to
be able to predict the number of followers, y, based on these features:

• number of people they follow, x(1)

• number of years since first post, x(2)

• average number of posts per day, x(3)

a) Suppose Billy has access to a large data set of Instagram accounts, and he uses multiple regression on
this data to fit a linear prediction rule of the form

H(x⃗) = w0 + w1x
(1) + w2x

(2) + w3x
(3).
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What does w2 represent in terms of Instagram followers?

Solution: The coefficient w2 is like the slope when x(2) is our variable. It represents the change
in y for each unit of change in x(2). That is, it represents a typical increase in Instagram followers
for each year of having an Instagram account, or how many followers someone might gain in a
year.

b) What if instead of the number of years since the first post, x(2), Billy instead uses the number of days
since the first post, x(4). Now he uses multiple regression to fit a prediction rule of the form

H ′(x⃗) = w′
0 + w′

1x
(1) + w′

3x
(3) + w′

4x
(4).

How do the parameters of this prediction rule (w′
0, w

′
1, w

′
3, w

′
4) compare to the parameters of original

prediction rule (w0, w1, w2, w3)?

Solution: By the same logic as above, w′
4 represents a typical increase in followers for each

additional day of having an account. Since there are 365 days in a year, we should expect that
w′

4 ∗ 365 = w2. Since the other variables are unchanged, we’d have w′
0 = w0, w

′
1 = w1, w

′
3 = w3.

Problem 7. Changing the Prediction Rule

Suppose we have a dataset consisting of variables x(1), x(2), and y. We use multiple regression to fit a
prediction rule of the form

H(x(1), x(2)) = w0 + w1(x
(1) + x(2)) + w2x

(1)x(2) + w3(x
(1) + 1)(x(2) + 1) (1)

and then again use multiple regression to fit a different prediction rule of the form

H ′(x(1), x(2)) = w′
0 + w′

1x
(1) + w′

2x
(2) + w′

3x
(1)x(2). (2)

Which form, (1) or (2), will yield a prediction rule with lower mean squared error? Justify your an-
swer.

Solution: The prediction rule of form (2) will have a lower MSE. We can see this by rewriting form
(1) as

H(x(1), x(2)) = w0 + w1(x
(1) + x(2)) + w2x

(1)x(2) + w3(x
(1) + 1)(x(2) + 1)

= w0 + w1x
(1) + w1x

(2) + w2x
(1)x(2) + w3x

(1)x(2) + w3x
(1) + w3x

(2) + w3

= (w0 + w3) + (w1 + w3)x
(1) + (w1 + w3)x

(2) + (w2 + w3)x
(1)x(2)

If we define new variables c0 = w0 + w3, c1 = w1 + w3, c2 = w2 + w3, we can write this as

= c0 + c1x
(1) + c1x

(2) + c2x
(1)x(2)

This is a very similar form to (2), except the weights of x(1) and x(2) are required to be the same, which
constrains the solution. In other words, with a prediction rule of form (2), multiple regression picks the
best parameters w′

0, w
′
1, w

′
2, w

′
3 to minimize the mean squared error. The weights w′

1 and w′
2 which are

the coefficients of x(1) and x(2) may not turn out to be the same. This says that the MSE is lower when
we allow for these coefficients to be different instead of forcing them to be the same.
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