Mock Exam - Midterm 1

1. (6 points) Define the extreme mean $(E M)$ of a dataset to be the average of its largest and smallest values. Let

$$
f(x)=-3 x+4
$$

Show that for any dataset $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
E M\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)=f\left(E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
$$

2. (10 points) Consider a new loss function,

$$
L(h, y)=e^{(h-y)^{2}}
$$

Given a dataset $y_{1}, y_{2}, \ldots, y_{n}$, let $R(h)$ represent the empirical risk for the dataset using this loss function.
a) (4 points) For the dataset $\{1,3,4\}$, calculate $R(2)$. Simplify your answer as much as possible without a calculator.
b) (6 points) For the same dataset $\{1,3,4\}$, perform one iteration of gradient descent on $R(h)$, starting at an initial prediction of $h_{0}=2$ with a step size of $\alpha=\frac{1}{2}$. Show your work and simplify your answer.
3. (8 points) Suppose you have a dataset

$$
\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

with $n=8$ ordered pairs such that the variance of $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ is 50 . Let m be the slope of the regression line fit to this data.

Suppose now we fit a regression line to the dataset

$$
\left\{\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}
$$

where the first two y-values have been swapped. Let m^{\prime} be the slope of this new regression line.
If $x_{1}=3, y_{1}=7, x_{2}=8$, and $y_{2}=2$, what is the difference between the new slope and the old slope? That is, what is $m^{\prime}-m$? The answer you get should be a number with no variables.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of the formula without \bar{y}.
4. (9 points) Consider the dataset shown below.

$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	y
0	6	8	-5
3	4	5	7
5	-1	-3	4
0	2	1	2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form

$$
H\left(x^{(1)}, x^{(2)}, x^{(3)}\right)=w_{0}+w_{1} x^{(1)} x^{(3)}+w_{2}\left(x^{(2)}-x^{(3)}\right)^{2} .
$$

Write down the design matrix X and observation vector \vec{y} for this scenario. No justification needed.
b) (4 points) For the X and \vec{y} that you have written down, let \vec{w} be the optimal parameter vector, which comes from solving the normal equations $X^{T} X \vec{w}=X^{T} \vec{y}$. Let $\vec{e}=\vec{y}-X \vec{w}$ be the error vector, and let e_{i} be the i th component of this error vector. Show that

$$
4 e_{1}+e_{2}+4 e_{3}+e_{4}=0
$$

