Create Rubric

33 points
(-) Create your rubric now or come back to it later. You can also make edits to your rubric while grading.

Q1
6 points

1. (6 points) Define the extreme mean $(E M)$ of a dataset to be the average of its largest and smallest values. Let
$f(x)=-3 x+4$.
Show that for any dataset $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,
$E M\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)=f\left(E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)$.

$1+6.0$
Fully correct
$2+1.0$
Say that the smallest of $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$ is and the largest is $f\left(x_{1}\right)$
$3+1.0$
Justifying the claim above
(can prove $a<b \Rightarrow f(a)>f(b)$ or
say that order gets reversed by this tranformation)
$4+1.0$
Correctly express $f\left(E M\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=f\left(\underline{x_{1}}\right.$
$5+1.0$
Correctly express
$E M\left(f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)\right)=\frac{f\left(x_{1}\right)+f\left(x_{n}\right)}{2}$
$6+2.0$
Correctly show the equivalence of $f\left(\frac{x_{1}+x_{n}}{2}\right)$ and $\frac{f\left(x_{1}\right) \text { - }}{}$
$7+1.0$
Partial credit for showing equivalence
$8+0.0$
Incorrect or omitted
$\boldsymbol{+}$ Add Rubric Item Create Group

Q2.1
4 points
Rub1

3
$1+4.0$
Fully correct: $R(2)=\frac{2 e+e^{4}}{3}$
$2+1.0$
Correctly express $R(h)=\frac{L\left(h, y_{1}\right)+L\left(h, y_{2}\right)+L\left(h, y_{3}\right)}{3}$
$3+0.5$
Partial credit for rubric item [2]: forgot to divide by 3
$4+1.0$
First term in numerator calculated correctly:
$L(2,1)=e$
$5+1.0$
Second term in numerator calculated correctly:
$L(2,3)=e$
$6+1.0$
Third term in numerator calculated correctly:
$L(2,4)=e^{4}$
$7+2.0$
Partial credit for rubric items [4], [5], [6]: small misunderstanding in how to calculate terms
(ex. calculating $R^{\prime}(2)$ instead, not squaring the exponer
$8+0.0$
Incorrect or omitted

+ Add Rubric Item	- Create Group	\downarrow

Q2.2
6 points

Fully correct
$2+1.0$
Correct gradient descent update rule:
$h_{1}=h_{0}-\alpha R^{\prime}\left(h_{0}\right)$
$3+2.0$
Correctly calculate derivative using chain rule
$R^{\prime}(h)=\frac{1}{n} \sum_{i=1}^{n} e^{\left(h-y_{i}\right)^{2}} * 2\left(h-y_{i}\right)$
$4+1.0$
Partial credit for derivative (ex. forgetting the 2)
$5+2.0$
Correctly calculate terms of derivative
$R^{\prime}(2)=\frac{e *(2)+e *(-2)+e^{4} *(-4)}{3}=-\frac{4 e^{4}}{3}$
$6+1.5$
Partial credit for rubric item [4]: small arithmetic error
$7+1.0$
Correctly simplify final answer:
$h_{1}=2+\frac{2}{3} e^{4}$ or equivalent
$8+0.0$
Incorrect or omitted

$\boldsymbol{\text { Add Rubric Item }}$	$\boldsymbol{\square}$ Create Group	ゅ

```
        3. (8 points) Suppose you have a dataset
```

$\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{8}, y_{3}\right)\right\}$
with $n=8$ ordered pairs such that the variance of $\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$ is 50 . Let m be the slope of the regression line fit to this data.
Suppose now we fit a regression line to the datase
$\left\{\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right), \ldots,\left(x_{8}, y_{8}\right)\right\}$
where the first two y-values have been swapped. Let m^{\prime} be the slope of this new regression line
If $x_{1}=3, y_{1}=7, x_{2}=8$, and $y_{2}=2$, what is the difference between the new slope and the old slope? That is, what
is $m^{\prime}-m$? The answer you get should be a number with no variables. is $m^{\prime}-m$? The answer you get should be a number with no variables.
Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of the formula without \bar{y}.
\square
$1+8.0$
Fully correct
$2+2.0$
Correct denominator: $n * \operatorname{Var}(x)=8 * 50$

More space on the next page.
$3+1.0$
Partial credit for denominator:
ex. forgot the n
$4+2.0$
Knew to separate out the first two terms $(i=1,2)$ in th numerator
$5+2.0$
Correctly express $m^{\prime}-m$ in terms of the $i=1,2$ nus terms and the denominator
$6+2.0$
Simplify to correct answer $\frac{1}{16}$ or equivalent
$7+1.0$
Partial credit for simplification: answer has \bar{x} or \bar{y}

$8+0.0$
Incorrect or omitted

+ Add Rubric Item	Create Group	㐫

Q4
9 points

Q4.1
5 points

$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	y
0	6	8	-5
3	4	5	7
5	-1	-3	4
0	2	1	2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form
$H\left(x^{(1)}, x^{(2)}, x^{(3)}\right)=w_{0}+w_{1} x^{(1)} x^{(3)}+w_{2}\left(x^{(2)}-x^{(3)}\right)^{2}$.

$1+4.0$
Correct design matrix X
$\left[\begin{array}{ccc}1 & 0 & 4 \\ 1 & 15 & 1 \\ 1 & -15 & 4 \\ 1 & 0 & 1\end{array}\right]$
$2+1.0$
$3+1.0$
Partial credit: design matrix has a first column of ones
$4+3.0$
Partial credit: seems to be creating the design matrix cors but more than one arithmetic mistake
$5+1.0$
Correct observation vector y
$\left[\begin{array}{c}-5 \\ 7 \\ 4 \\ 2\end{array}\right]$
$6+0.0$
Incorrect or omitted

+ Add Rubric Item	Create Group	$\stackrel{\downarrow}{\boldsymbol{\iota}}$

Q4.2
4 points
; Rubı
b) (4 points) For the X and \vec{y} that you have writen down, let \vec{w} be the optimal parameter vector, which comes
from solving the normal equations $X^{T} X \vec{w}=X^{T} \vec{y}$. Let $\vec{e}=\vec{y}-X \vec{w}$ be the error vector, and let e_{t} be the i th from solving the normal equations $X^{T} X \vec{w}=X^{T} \vec{y}$. Let $\vec{e}=\vec{y}-X$
component of this error vector. Show that

$$
4 e_{1}+e_{2}+4 e_{3}+e_{4}=0 .
$$

$1+4.0$
Strategy 1: State that
\vec{e} is orthogonal to the columns of X and use the column with entries $4,1,4,1$ to conclude the res
$2+2.0$
Strategy 1: State that
\vec{e} is orthogonal to the columns of X or $X^{T} \vec{e}=0$
$3+4.0$
Strategy 2: Calcuate \vec{w} by solving normal equations
$X^{T} X \vec{w}=X^{T} \vec{y}$, then calculating error vector
$\vec{e}=\vec{y}-X \vec{w}$, resulting in correct error vector
$\left\lceil\begin{array}{c}-3.5 \\ 3.5 \\ 3.5\end{array}\right\rceil$
$4+2.0$
Strategy 2: Correct approach, but incorrect error vector
$\begin{array}{ll}54 & +0.0 \\ \text { Incorrect or omitted }\end{array}$

$\boldsymbol{~ A d d}$ Rubric Item	Create Group	$\stackrel{\downarrow}{\boldsymbol{\star}}$

