
Mock Exam - Midterm 1

1. (6 points) Define the extreme mean (EM) of a dataset to be the average of its largest and smallest values. Let

f(x) = −3x+ 4.

Show that for any dataset x1 ≤ x2 ≤ · · · ≤ xn,

EM(f(x1), f(x2), . . . , f(xn)) = f(EM(x1, x2, . . . , xn)).

Solution: This linear transformation reverses the order of the data because if a < b, then −3a > −3b and
so adding four to both sides gives f(a) > f(b). Since x1 ≤ x2 ≤ · · · ≤ xn, this means that the smallest of
f(x1), f(x2), . . . , f(xn) is f(xn) and the largest is f(x1). Therefore,

EM(f(x1), f(x2), . . . , f(xn)) =
f(xn) + f(xn)

2

=
−3xn + 4− 3x1 + 4

2

=
−3xn − 3x1

2
+ 4

= −3

(
x1 + xn

2

)
+ 4

= −3EM(x1, x2, . . . , xn) + 4

= f(EM(x1, x2, . . . , xn)).

2. (10 points) Consider a new loss function,

L(h, y) = e(h−y)2 .

Given a dataset y1, y2, . . . , yn, let R(h) represent the empirical risk for the dataset using this loss function.

a) (4 points) For the dataset {1, 3, 4}, calculate R(2). Simplify your answer as much as possible without a calcula-
tor.

Solution: We need to calculate the loss for each data point then average the losses. That is, we need to
calculate

R(2) =
1

3

3∑
i=1

e(2−yi)
2

.

The table below records the necessary information:

yi 1 3 4
2− yi 1 -1 -2

(2− yi)
2 1 1 4

e(2−yi)
2

e e e4

This means

R(2) =
1

3

3∑
i=1

e(2−yi)
2

=
1

3
(e+ e+ e4)

=
1

3
(2e+ e4)

1



b) (6 points) For the same dataset {1, 3, 4}, perform one iteration of gradient descent on R(h), starting at an initial
prediction of h0 = 2 with a step size of α = 1

2 . Show your work and simplify your answer.

Solution: First, we calculate the derivative of R(h). Using the chain rule, we have

R(h) =
1

n

n∑
i=1

e(h−yi)
2

R′(h) =
1

n

n∑
i=1

e(h−yi)
2

∗ 2(h− yi)

To apply the gradient descent update rule, we next have to calculate R′(h0) or R′(2). Plugging in h = 2
to the derivative we calculated above gives

R′(2) =
1

n

n∑
i=1

e(2−yi)
2

∗ 2(2− yi)

The table below records the necessary information (note that we’ve done most of the work already).

yi 1 3 4
2− yi 1 -1 -2

(2− yi)
2 1 1 4

e(2−yi)
2

e e e4

e(2−yi)
2 ∗ 2(2− yi) 2e −2e −4e4

Therefore

R′(2) =
1

3

3∑
i=1

e(2−yi)
2∗2(2−yi)

=
1

3
(2e− 2e− 4e4)

=
−4e4

3
.

Applying the gradient descent update rule gives

h1 = h0 − α ∗R′(h0)

= 2− 1

2
∗ −4e4

3

= 2 +
2e4

3

3. (8 points) Suppose you have a dataset

{(x1, y1), (x2, y2), . . . , (x8, y8)}

with n = 8 ordered pairs such that the variance of {x1, x2, . . . , x8} is 50. Let m be the slope of the regression line fit
to this data.

Suppose now we fit a regression line to the dataset

{(x1, y2), (x2, y1), . . . , (x8, y8)}

where the first two y-values have been swapped. Let m′ be the slope of this new regression line.

If x1 = 3, y1 = 7, x2 = 8, and y2 = 2, what is the difference between the new slope and the old slope? That is, what
is m′ −m? The answer you get should be a number with no variables.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of
the formula without y.

2



Solution: Using the formula for the slope of the regression line, we have

m =

n∑
i=1

(xi − x)yi

n∑
i=1

(xi − x)2

=

n∑
i=1

(xi − x)yi

n ∗ V ar(x)

=

(3− x̄) ∗ 7 + (8− x̄) ∗ 2 +
n∑

i=3

(xi − x)yi

8 ∗ 50
.

Note that by interchanging the first two y-values, the terms in the sum from i = 3 to n, the number of data points
n, and the variance of the x-values are all unchanged. So the slope becomes

m′ =

(3− x̄) ∗ 2 + (8− x̄) ∗ 7 +
n∑

i=3

(xi − x)yi

8 ∗ 50

and the difference between these slopes is given by

m′ −m =
(3− x̄) ∗ 2 + (8− x̄) ∗ 7− ((3− x̄) ∗ 7 + (8− x̄) ∗ 2)

8 ∗ 50

=
(3− x̄) ∗ 2 + (8− x̄) ∗ 7− (3− x̄) ∗ 7− (8− x̄) ∗ 2

8 ∗ 50

=
(3− x̄) ∗ (−5) + (8− x̄) ∗ 5

8 ∗ 50

=
−15 + 5x̄+ 40− 5x̄

8 ∗ 50

=
25

8 ∗ 50

=
1

16
.

4. (9 points) Consider the dataset shown below.

x(1) x(2) x(3) y
0 6 8 -5
3 4 5 7
5 -1 -3 4
0 2 1 2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form

H(x(1), x(2), x(3)) = w0 + w1x
(1)x(3) + w2(x

(2) − x(3))2.

Write down the design matrix X and observation vector y⃗ for this scenario. No justification needed.

Solution: The design matrix X and observation vector y⃗ are given by

X =


1 0 4
1 15 1
1 −15 4
1 0 1

, y =


−5
7
4
2


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b) (4 points) For the X and y⃗ that you have written down, let w⃗ be the optimal parameter vector, which comes
from solving the normal equations XTXw⃗ = XT y⃗. Let e⃗ = y⃗ −Xw⃗ be the error vector, and let ei be the ith
component of this error vector. Show that

4e1 + e2 + 4e3 + e4 = 0.

Solution: We can rewrite the normal equations in terms of the error vector to get

XTXw⃗ = XT y⃗

0⃗ = XT y⃗ −XTXw⃗

0⃗ = XT (y⃗ −Xw⃗)

0⃗ = XT e⃗.

In particular, since one row of XT is
[
4 1 4 1

]
, when we multiply e⃗ by this row, the result is zero. This

says that 4e1 + e2 + 4e3 + e4 = 0, as desired.
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