Mock Exam - Midterm 1

1. (6 points) Define the extreme mean (EM) of a dataset to be the average of its largest and smallest values. Let
f(z) = =3z +4.

Show that for any dataset 1 < zo < -+ < xy,,

EM(f(x1), f(x2),..., f(zn)) = f(EM(x1,22,...,2,)).

Solution: This linear transformation reverses the order of the data because if a < b, then —3a > —3b and
so adding four to both sides gives f(a) > f(b). Since x; < zg < --- < x,, this means that the smallest of
flx1), f(z2), ..., f(z,) is f(z,) and the largest is f(z1). Therefore,
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2. (10 points) Consider a new loss function,
L(h,y) = e,

Given a dataset y1, %2, - .., Yn, let R(h) represent the empirical risk for the dataset using this loss function.

a) (4 points) For the dataset {1, 3,4}, calculate R(2). Simplify your answer as much as possible without a calcula-

tor.
Solution: We need to calculate the loss for each data point then average the losses. That is, we need to
calculate
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b) (6 points) For the same dataset {1, 3,4}, perform one iteration of gradient descent on R(h), starting at an initial
prediction of hy = 2 with a step size of a = % Show your work and simplify your answer.

Solution: First, we calculate the derivative of R(h). Using the chain rule, we have
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To apply the gradient descent update rule, we next have to calculate R'(hg) or R'(2). Plugging in h = 2
to the derivative we calculated above gives
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The table below records the necessary information (note that we’ve done most of the work already).
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Applying the gradient descent update rule gives

h1 = ho — Q% R/(ho)
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3. (8 points) Suppose you have a dataset
{(xlv yl)a ('1:27 92)7 ceey (ZESa yS)}
with n = 8 ordered pairs such that the variance of {1, z3,...,2s} is 50. Let m be the slope of the regression line fit

to this data.

Suppose now we fit a regression line to the dataset

{(xhyQ)a ($2,y1)7 R (Z‘SayS)}

where the first two y-values have been swapped. Let m’ be the slope of this new regression line.

Ifxy =3,y1 =7, 2o =8, and yo = 2, what is the difference between the new slope and the old slope? That is, what
is m' —m? The answer you get should be a number with no variables.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of
the formula without 7.



Solution: Using the formula for the slope of the regression line, we have
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Note that by interchanging the first two y-values, the terms in the sum from i = 3 to n, the number of data points
n, and the variance of the z-values are all unchanged. So the slope becomes
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and the difference between these slopes is given by
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4. (9 points) Consider the dataset shown below.
2@ | 2@ | 2® |y
0 6 8 -5

3 4 5 7
5) -1 -3 4
0 2 1 2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form
H(zW, 2@ 23y = wg 4+ wyzMz® 4wy (2 — 23)2,

Write down the design matrix X and observation vector ¢ for this scenario. No justification needed.

Solution: The design matrix X and observation vector i are given by

1 0 4 -5
1 15 1 7

X=11 15 4]0 ¥= |4
1 0 1 9




b) (4 points) For the X and ¢ that you have written down, let & be the optimal parameter vector, which comes
from solving the normal equations X7 Xw = X7y. Let € = §f — X be the error vector, and let e; be the ith

component of this error vector. Show that

4e1 + eq +4des +e4 = 0.

Solution: We can rewrite the normal equations in terms of the error vector to get

XTXxw=XTy
0=XTy—x"Xw
0=X"(§— Xw)
0=x"e

In particular, since one row of X7 is [4 1 4 1}, when we multiply € by this row, the result is zero. This
says that 4e; + eg + 4es + e4 = 0, as desired.




