1. (6 points) Define the extreme mean (EM) of a dataset to be the average of its largest and smallest values. Let

$$f(x) = -3x + 4.$$

Show that for any dataset $x_1 \leq x_2 \leq \cdots \leq x_n$,

$$EM(f(x_1), f(x_2), \dots, f(x_n)) = f(EM(x_1, x_2, \dots, x_n)).$$

Solution: This linear transformation reverses the order of the data because if a < b, then -3a > -3b and so adding four to both sides gives f(a) > f(b). Since $x_1 \le x_2 \le \cdots \le x_n$, this means that the smallest of $f(x_1), f(x_2), \ldots, f(x_n)$ is $f(x_n)$ and the largest is $f(x_1)$. Therefore,

$$EM(f(x_1), f(x_2), \dots, f(x_n)) = \frac{f(x_n) + f(x_n)}{2}$$

= $\frac{-3x_n + 4 - 3x_1 + 4}{2}$
= $\frac{-3x_n - 3x_1}{2} + 4$
= $-3\left(\frac{x_1 + x_n}{2}\right) + 4$
= $-3EM(x_1, x_2, \dots, x_n) + 4$
= $f(EM(x_1, x_2, \dots, x_n)).$

2. (10 points) Consider a new loss function,

$$L(h,y) = e^{(h-y)^2}.$$

Given a dataset y_1, y_2, \ldots, y_n , let R(h) represent the empirical risk for the dataset using this loss function.

a) (4 points) For the dataset $\{1, 3, 4\}$, calculate R(2). Simplify your answer as much as possible without a calculator.

Solution: We need to calculate the loss for each data point then average the losses. That is, we need to calculate

$$R(2) = \frac{1}{3} \sum_{i=1}^{3} e^{(2-y_i)^2}.$$

The table below records the necessary information:

$$\begin{array}{c|ccccc} y_i & 1 & 3 & 4 \\ \hline 2 - y_i & 1 & -1 & -2 \\ \hline (2 - y_i)^2 & 1 & 1 & 4 \\ \hline e^{(2 - y_i)^2} & e & e & e^4 \end{array}$$

This means

$$R(2) = \frac{1}{3} \sum_{i=1}^{3} e^{(2-y_i)^2}$$
$$= \frac{1}{3} (e + e + e^4)$$
$$= \frac{1}{3} (2e + e^4)$$

b) (6 points) For the same dataset {1,3,4}, perform one iteration of gradient descent on R(h), starting at an initial prediction of $h_0 = 2$ with a step size of $\alpha = \frac{1}{2}$. Show your work and simplify your answer.

Solution: First, we calculate the derivative of R(h). Using the chain rule, we have

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} e^{(h-y_i)^2}$$
$$R'(h) = \frac{1}{n} \sum_{i=1}^{n} e^{(h-y_i)^2} * 2(h-y_i)$$

To apply the gradient descent update rule, we next have to calculate $R'(h_0)$ or R'(2). Plugging in h = 2 to the derivative we calculated above gives

$$R'(2) = \frac{1}{n} \sum_{i=1}^{n} e^{(2-y_i)^2} * 2(2-y_i)$$

The table below records the necessary information (note that we've done most of the work already).

y_i	1	3	4
$2-y_i$	1	-1	-2
$(2 - y_i)^2$	1	1	4
$e^{(2-y_i)^2}$	e	e	e^4
$e^{(2-y_i)^2} * 2(2-y_i)$	2e	-2e	$-4e^{4}$

Therefore

$$R'(2) = \frac{1}{3} \sum_{i=1}^{3} e^{(2-y_i)^2 * 2(2-y_i)}$$
$$= \frac{1}{3} (2e - 2e - 4e^4)$$
$$= \frac{-4e^4}{3}.$$

Applying the gradient descent update rule gives

$$h_1 = h_0 - \alpha * R'(h_0)$$

= $2 - \frac{1}{2} * \frac{-4e^4}{3}$
= $2 + \frac{2e^4}{3}$

3. (8 points) Suppose you have a dataset

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_8, y_8)\}$$

with n = 8 ordered pairs such that the variance of $\{x_1, x_2, \ldots, x_8\}$ is 50. Let *m* be the slope of the regression line fit to this data.

Suppose now we fit a regression line to the dataset

$$\{(x_1, y_2), (x_2, y_1), \dots, (x_8, y_8)\}$$

where the first two y-values have been swapped. Let m' be the slope of this new regression line.

If $x_1 = 3$, $y_1 = 7$, $x_2 = 8$, and $y_2 = 2$, what is the difference between the new slope and the old slope? That is, what is m' - m? The answer you get should be a number with no variables.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using the version of the formula without \overline{y} .

Solution: Using the formula for the slope of the regression line, we have

$$m = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$$

= $\frac{\sum_{i=1}^{n} (x_i - \overline{x}) y_i}{n * Var(x)}$
= $\frac{(3 - \overline{x}) * 7 + (8 - \overline{x}) * 2 + \sum_{i=3}^{n} (x_i - \overline{x}) y_i}{8 * 50}$.

Note that by interchanging the first two y-values, the terms in the sum from i = 3 to n, the number of data points n, and the variance of the x-values are all unchanged. So the slope becomes

$$m' = \frac{(3-\bar{x})*2 + (8-\bar{x})*7 + \sum_{i=3}^{n} (x_i - \bar{x})y_i}{8*50}$$

and the difference between these slopes is given by

$$m' - m = \frac{(3 - \bar{x}) * 2 + (8 - \bar{x}) * 7 - ((3 - \bar{x}) * 7 + (8 - \bar{x}) * 2)}{8 * 50}$$

$$= \frac{(3 - \bar{x}) * 2 + (8 - \bar{x}) * 7 - (3 - \bar{x}) * 7 - (8 - \bar{x}) * 2}{8 * 50}$$

$$= \frac{(3 - \bar{x}) * (-5) + (8 - \bar{x}) * 5}{8 * 50}$$

$$= \frac{-15 + 5\bar{x} + 40 - 5\bar{x}}{8 * 50}$$

$$= \frac{25}{8 * 50}$$

$$= \frac{1}{16}.$$

4. (9 points) Consider the dataset shown below.

$x^{(1)}$	$x^{(2)}$	$x^{(3)}$	y
0	6	8	-5
3	4	5	7
5	-1	-3	4
0	2	1	2

a) (5 points) We want to use multiple regression to fit a prediction rule of the form

$$H(x^{(1)}, x^{(2)}, x^{(3)}) = w_0 + w_1 x^{(1)} x^{(3)} + w_2 (x^{(2)} - x^{(3)})^2.$$

Write down the design matrix X and observation vector \vec{y} for this scenario. No justification needed.

Solution:	The design matrix X a	and observat	ion veo	etor \vec{y} are	given by	
		$X = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$	$\begin{array}{c} 0 \\ 15 \\ -15 \\ 0 \end{array}$	$\begin{bmatrix} 4\\1\\4\\1 \end{bmatrix}, y =$	$\begin{bmatrix} -5\\7\\4\\2 \end{bmatrix}$	

b) (4 points) For the X and \vec{y} that you have written down, let \vec{w} be the optimal parameter vector, which comes from solving the normal equations $X^T X \vec{w} = X^T \vec{y}$. Let $\vec{e} = \vec{y} - X \vec{w}$ be the error vector, and let e_i be the *i*th component of this error vector. Show that

$$4e_1 + e_2 + 4e_3 + e_4 = 0.$$

Solution: We can rewrite the normal equations in terms of the error vector to get

$$\begin{split} X^T X \vec{w} &= X^T \vec{y} \\ \vec{0} &= X^T \vec{y} - X^T X \vec{w} \\ \vec{0} &= X^T (\vec{y} - X \vec{w}) \\ \vec{0} &= X^T \vec{e}. \end{split}$$

In particular, since one row of X^T is $\begin{bmatrix} 4 & 1 & 4 & 1 \end{bmatrix}$, when we multiply \vec{e} by this row, the result is zero. This says that $4e_1 + e_2 + 4e_3 + e_4 = 0$, as desired.