DSC 40A - Reference Sheet for Final Part 1

Empirical Risk

For a loss function $L(h, y)$, the empirical risk is given by:

$$
R(h)=\frac{1}{n} \sum_{i=1}^{n} L\left(h, y_{i}\right)
$$

Simple Linear Regression

The parameters of the least squares regression line are:

$$
\begin{aligned}
& w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \cdot \frac{\sigma_{y}}{\sigma_{x}} \\
& w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
\end{aligned}
$$

Gradient Descent

The update rule is:

$$
h_{i}=h_{i-1}-\alpha \cdot\left(\frac{d R}{d h}\left(h_{i-1}\right)\right)
$$

Convexity

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is convex if for every choice of a, b and $t \in[0,1]$:

$$
(1-t) f(a)+t f(b) \geq f((1-t) a+t b)
$$

Linear Algebra for Regression

Least squares regression aims to minimize the mean squared error, which is:

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

Minimizing this quantity is equivalent to satisfying the normal equations:

$$
X^{T} X \vec{w}=X^{T} \vec{y}
$$

If $X^{T} X$ is invertible, there is a unique solution to the normal equations, which is:

$$
\vec{w}^{*}=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

