Lecture 4 – Center and Spread, Other Loss Functions



DSC 40A, Spring 2023

Announcements

- ► Homework 1 is due **tomorrow at 11:59pm**.
 - LaTeX template provided if you want to type your answers.
 - Make sure to explain your answers! Don't just write a number; show how you got it.
 - Please come to office hours!
- Discussion section is on Wednesday.

Agenda

- Recap of empirical risk minimization.
- Center and spread.
- ► A new loss function.

Recap of empirical risk minimization

Empirical risk minimization

- ► **Goal**: Given a dataset $y_1, y_2, ..., y_n$, determine the best prediction h^* .
- Strategy:
 - Choose a loss function, L(h, y), that measures how far any particular prediction h is from the "right answer" y.
 - Minimize empirical risk (also known as average loss) over the entire dataset. The value(s) of h that minimize empirical risk are the resulting "best predictions".

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

Absolute loss and squared loss

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- Absolute loss: $L_{abs}(h, y) = |y h|$.
 - Empirical risk: $R_{abs}(h) = \frac{1}{n} \sum_{i=1}^{n} |y_i h|$. Also called "mean absolute error".
 - Minimized by $h^* = Median(y_1, y_2, ..., y_n)$.
- ► Squared loss: $L_{sq}(h, y) = (y h)^2$.
 - Empirical risk: $R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i h)^2$. Also called "mean squared error".
 - Minimized by $h^* = \mathbf{Mean}(y_1, y_2, ..., y_n)$.

Center and spread

What does it mean?

General form of empirical risk:

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y_i)$$

- ► The input h* that minimizes R(h) is some measure of the center of the data set.
 - e.g. median, mean, mode.
- The minimum output $R(h^*)$ represents some measure of the spread, or variation, in the data set.

Absolute loss

The empirical risk for the absolute loss is

R_{abs}(h) =
$$\frac{1}{n} \sum_{i=1}^{n} |y_i - h|$$

- $R_{abs}(h) \text{ is minimized at } h^* = \text{Median}(y_1, y_2, ..., y_n).$
- ightharpoonup Therefore, the minimum value of $R_{abs}(h)$ is

$$\frac{R_{abs}(h^*) = R_{abs}(Median(y_1, y_2, ..., y_n))}{= \frac{1}{n} \sum_{i=1}^{n} |y_i - Median(y_1, y_2, ..., y_n)|.}$$
spread { avg distance to med.an, for all data points

Mean absolute deviation from the median

The minimium value of $R_{abs}(h)$ is the **mean absolute** deviation from the median.

$$\frac{1}{n} \sum_{i=1}^{n} |y_i - \text{Median}(y_1, y_2, ..., y_n)|$$

It measures how far each data point is from the median, on average.

Discussion Question

For the data set 2,3,3,4, what is the mean absolute deviation from the $\underline{\text{median}}$?

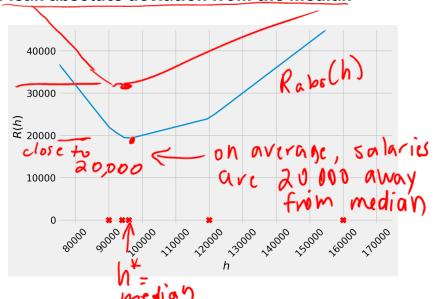
رر[©] ار

b) $\frac{1}{2}$

c) 1

d) :

Mean absolute deviation from the median



Squared loss

► The empirical risk for the squared loss is

$$R_{sq}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$

- $ightharpoonup R_{sq}(h)$ is minimized at $h^* = Mean(y_1, y_2, ..., y_n)$.
- Therefore, the minimum value of $R_{sq}(h)$ is

$$R_{sq}(h^*) = R_{sq}(Mean(y_1, y_2, ..., y_n))$$

$$= \frac{1}{n} \sum_{i=1}^{n} (y_i - Mean(y_1, y_2, ..., y_n))^2.$$

$$Variance$$

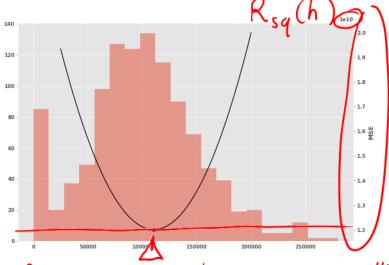
Variance

The minimium value of $R_{sq}(h)$ is the mean squared deviation from the mean, more commonly known as the variance.

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \text{Mean}(y_1, y_2, ..., y_n))^2$$

- It measures the squared distance of each data point from the mean, on average.
- Its square root is called the standard deviation.

Variance



variance 10 mean sdary was about \$110,000

0-1 loss

► The empirical risk for the 0-1 loss is

$$R_{0,1}(h) = \frac{1}{n} \sum_{i=1}^{n} \begin{cases} 0^{k} & \text{if } \frac{h = y_{i}}{h \neq y_{i}} \end{cases}$$
 mode

- This is the proportion (between 0 and 1) of data points not equal to *h*.
- $Arr R_{0,1}(h)$ is minimized at $h^* = \text{Mode}(y_1, y_2, ..., y_n)$.
- Therefore, $R_{0,1}(h^*)$ is the proportion of data points not equal to the mode.

A poor way to measure spread

- The minimium value of $R_{0,1}(h)$ is the proportion of data points not equal to the mode.
- A higher value means less of the data is clustered at the mode.
- Just as the mode is a very simplistic way to measure the center of the data, this is a very crude way to measure spread.

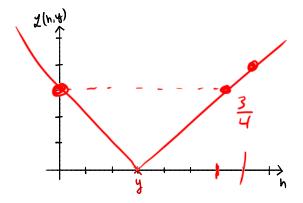
Summary of center and spread

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- ► The minimum values of these risk functions are various measures of **spread**.
- There are many different ways to measure both center and spread. These are sometimes called descriptive statistics.

A new loss function

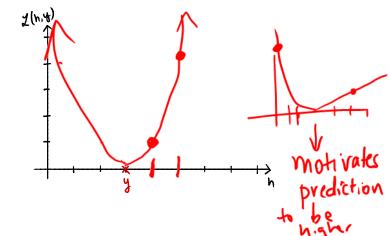
Plotting a loss function

- The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{abs}(h, y) = |y h|$:



Plotting a loss function

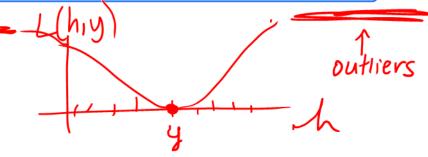
- ▶ The plot of a loss function tells us how it treats outliers.
- Consider y to be some fixed value. Plot $L_{sq}(h, y) = (y h)^2$:



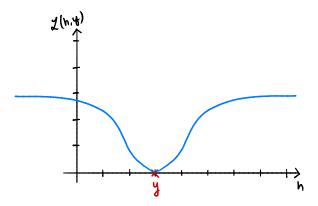
Discussion Question

Suppose *L* considers all <u>outliers</u> to be equally bad. What would it look like far away from *y*?

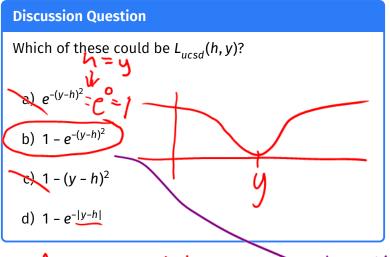
- a) flat
- b) rapidly decreasing
- c) rapidly increasing



A very insensitive loss



 \triangleright We'll call this loss L_{ucsd} because we made it up at UCSD.



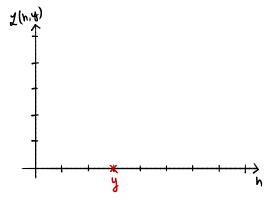
When h=y, must be 0 >try it desmos!

Adding a scale parameter

- Problem: L_{ucsd} has a fixed scale. This won't work for all datasets.
 - If we're predicting temperature, and we're off by 100 degrees, that's bad.
 - If we're predicting salaries, and we're off by 100 dollars, that's pretty good.
 - What we consider to be an outlier depends on the scale of the data.
- Fix: add a scale parameter, σ :

 Controls width $L_{ucsd}(h,y) = 1 e^{-(y-h)^2/\sigma^2}$ Of bow!

Scale parameter controls width of bowl



Empirical risk minimization

- \triangleright We have salaries $y_1, y_2, ..., y_n$.
- To find prediction, ERM says to minimize the average loss:

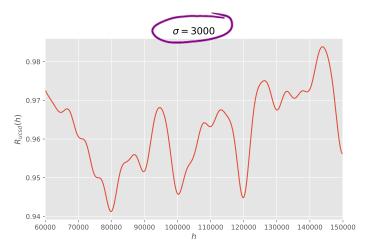
$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} L_{ucsd}(h, y_i)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

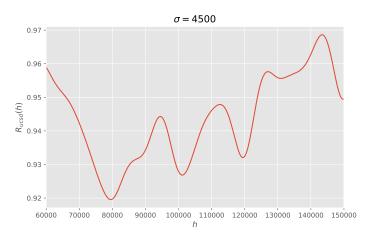
Let's plot R_{ucsd}

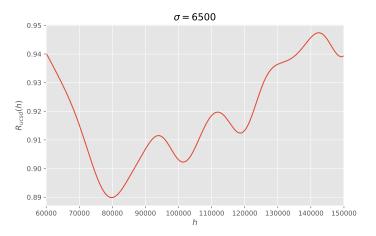
Recall:

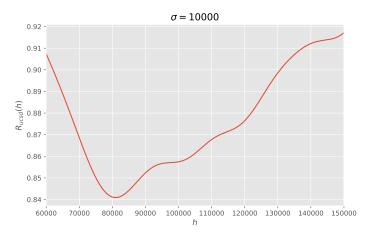
$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

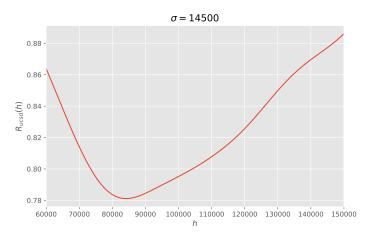
- Once we have data $y_1, y_2, ..., y_n$ and a scale σ , we can plot $R_{ucsd}(h)$.
- Let's try several scales, σ , for the data scientist salary data.

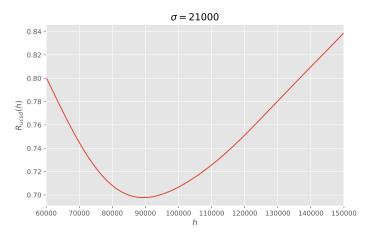


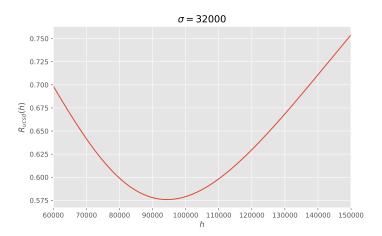












Minimizing R_{ucsd}

- ▶ To find the best prediction, we find h^* minimizing $R_{ucsd}(h)$.
- $ightharpoonup R_{ucsd}(h)$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left(1 - e^{-(y_i - h)^2 / \sigma^2} \right) \right)$$
chain rule

try it

Step 2: Setting to zero and solving

▶ We found:

$$\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2} = \bigcirc$$

Now we just set to zero and solve for h:

$$\chi \cdot e^{\chi} = 0$$
 $0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2/\sigma^2}$

We **can** calculate derivative, but we **can't** solve for *h*; we're stuck again.

Summary

- Different loss functions lead to empirical risk functions that are minimized at various measures of center.
- The minimum values of these empirical risk functions are various measures of **spread**.
- We came up with a more complicated loss function, L_{ucsd} , that treats all outliers equally.
 - We weren't able to minimize its empirical risk R_{ucsd} by hand.
- Next Time: We'll learn a computational tool to approximate the minimizer of R_{ucsd}.