Lecture 5 - Gradient Descent

DSC 40A, Spring 2023

Announcements

- Discussion is tonight at 7pm or 8pm in FAH 1101.
 - Come to work on Groupwork 2, which is due tonight at 11:59pm.
 - Please attend the section you are enrolled in.
- Homework 1 deadline extended to Thursday at 11:59pm.
 - This is a one-time bonus for the first homework. I will review your submission today and let you know if the amount of explanation provided seems insufficient.
 - No submissions after Thursday. Nobody will use a slip day on Homework 1.
- ► Homework 2 is released, due **Tuesday at 11:59pm**.

Agenda

- ► Brief recap of Lecture 4.
- Gradient descent fundamentals.

The recipe

Suppose we're given a dataset, $y_1, y_2, ..., y_n$ and want to determine the best future prediction h^* .

- 1. Choose a loss function L(h, y) that measures how far our prediction h is from the "right answer" y.
 - Absolute loss, $L_{abs}(h, y) = |y h|$.
 - ► Squared loss, $L_{sq}(h, y) = (y h)^2$.
- 2. Find h^* by minimizing the average of our chosen loss function over the entire dataset.
 - "Empirical risk" is just another name for average loss.

$$R(h) = \frac{1}{n} \sum_{i=1}^{n} L(h, y)$$

A very insensitive loss

- Last time, we introduced a new loss function, L_{ucsd} , with the property that it (roughly) penalizes all bad predictions the same.
 - A prediction that is off by 50 has approximately the same loss as a prediction that is of by 500.
 - ▶ The effect: L_{ucsd} is not as sensitive to outliers.

A very insensitive loss

The formula for L_{ucsd} is as follows (no need to memorize):

$$L_{ucsd}(h, y) = 1 - e^{-(y-h)^2/\sigma^2}$$

- ► The shape (and formula) come from an upside-down bell curve.
- $ightharpoonup L_{ucsd}$ contains a scale parameter, σ .
 - Nothing to do with variance or standard deviation.
 - Accounts for the fact that different datasets have different thresholds for what counts as an outlier.
 - Like a knob that you get to turn the larger σ is, the more sensitive L_{ucsd} is to outliers (and the more smooth R_{ucsd} is).

Minimizing R_{ucsd}

The corresponding empirical risk, R_{ucsd}, is

$$R_{ucsd}(h) = \frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right]$$

- $ightharpoonup R_{ucsd}$ is differentiable.
- ► To minimize: take derivative, set to zero, solve.

Step 1: Taking the derivative

$$\frac{dR_{ucsd}}{dh} = \frac{d}{dh} \left(\frac{1}{n} \sum_{i=1}^{n} \left[1 - e^{-(y_i - h)^2 / \sigma^2} \right] \right)$$

Step 2: Setting to zero and solving

▶ We found:

$$\frac{d}{dh}R_{ucsd}(h) = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

Now we just set to zero and solve for h:

$$0 = \frac{2}{n\sigma^2} \sum_{i=1}^{n} (h - y_i) \cdot e^{-(h - y_i)^2 / \sigma^2}$$

We can calculate derivative, but we can't solve for h; we're stuck again.

Gradient descent fundamentals

The general problem

- **Given:** a differentiable function R(h).
- ▶ **Goal:** find the input h^* that minimizes R(h).

Meaning of the derivative

- ► We're trying to minimize a **differentiable** function *R*(*h*). Is calculating the derivative helpful?
- $ightharpoonup \frac{dR}{dh}(h)$ is a function; it gives the **slope** at h.

- If the slope of *R* at *h* is **positive** then moving to the **left** decreases the value of *R*.
- i.e., we should **decrease** *h*.

- If the slope of *R* at *h* is **negative** then moving to the **right** decreases the value of *R*.
- i.e., we should **increase** *h*.

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ► Slope at h_0 negative? Then increase h_0 .
- ► Slope at h_0 positive? Then decrease h_0 .

- \triangleright Pick a starting place, h_0 . Where do we go next?
- ► Slope at h_0 negative? Then increase h_0 .
- ▶ Slope at h_0 positive? Then decrease h_0 .
- Something like this will work:

$$h_1 = h_0 - \frac{dR}{dh}(h_0)$$

Gradient Descent

- Pick α to be a positive number. It is the **learning rate**, also known as the **step size**.
- Pick a starting prediction, h_0 .
- ► On step i, perform update $h_i = h_{i-1} \alpha \cdot \frac{dR}{dh}(h_{i-1})$
- Repeat until convergence (when h doesn't change much).

Gradient Descent

```
def gradient_descent(derivative, h, alpha, tol=1e-12):
    """Minimize using gradient descent."""
    while True:
        h_next = h - alpha * derivative(h)
        if abs(h_next - h) < tol:
            break
        h = h_next
    return h</pre>
```

Note: it's called gradient descent because the gradient is the generalization of the derivative for multivariable functions.

Example: Minimizing mean squared error

Recall the mean squared error and its derivative:

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$
 $\frac{dR_{\text{sq}}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Discussion Question

Consider the dataset -4, -2, 2, 4. Pick $h_0 = 4$ and $\alpha = \frac{1}{4}$. Find h₁.

a) -1
b) 0
c) 1
d) 2

Solution

$$R_{\text{sq}}(h) = \frac{1}{n} \sum_{i=1}^{n} (y_i - h)^2$$
 $\frac{dR_{\text{sq}}}{dh}(h) = \frac{2}{n} \sum_{i=1}^{n} (h - y_i)$

Consider the dataset -4, -2, 2, 4. Pick h_0 = 4 and α = $\frac{1}{4}$. Find h_1 .

Summary

- Gradient descent is a general tool used to minimize differentiable functions.
 - ► We will usually use it to minimize empirical risk, but it can minimize other functions, too.
- Gradient descent progressively updates our guess for h* according to the update rule

$$h_i = h_{i-1} - \alpha \cdot \left(\frac{dR}{dh}(h_{i-1})\right).$$

Next Time: We'll demonstrate gradient descent in a Jupyter notebook. We'll learn when this procedure works well and when it doesn't.