Lecture 6 — Gradient Descent in Action

DSC 40A, Spring 2023



Announcements

Homework 2 is due Tuesday at 11:59pm.
Come to office hours before then for help!

See dscs4ea.com/calendar for the office hours
schedule.

Solutions to Groupwork 2 and Homework 1 are available
on Campuswire.
Reviewing them will help you write better solutions
in future assignments.

You should also make sure you know how to do all
groupwork and homework questions for exams.


dsc40a.com/calendar

Agenda

Brief recap of Lecture 5.
Gradient descent demo.

When is gradient descent guaranteed to work?



Gradient descent fundamentals



The general problem

Given: a differentiable function R(h).

Goal: find the input h* that minimizes R(h).



Key idea behind gradient descent

If the slope of R at h is positive then we'll decrease h.

If the slope of R at h is negative then we’ll increase h.
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Gradient descent

Pick a positive constant, a, for the learning rate.
Pick a starting prediction, h,,.

Repeatedly apply the gradient descent update rule.
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Repeat until convergence (when h doesn t cha ge much).
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Gradient descent demo



Let's see gradient descent in action. Follow along here.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec06/lec06.ipynb

When is gradient descent guaranteed to work?



Convex functions

Convex Non-convex



Convexity: Definition

f is convex if for every a, b in the domain of f, the line
segment between

(a,f(a)) and (b, f(b))
does not go below the plot of f.




Convexity: Definition

f is convex if for every a, b in the domain of f, the line
segment between

(a,f(a)) and (b, f(b))

does not go below the plot of f.
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Convexity: Formal definition

I l * A function f : R - R is convex if for every choice of a,b

and t € [0, 1]: LM'
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This is a formal way of restating the condition from the
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Discussion Question

Which of these functions is not convex?
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Why does convexity matter?

Convex functions are (relatively) easy to minimize with
gradient descent.

Theorem: if R(h) is convex and differentiable then
gradient descent converges to a global minimum of R
provided that the step size is small enough.

Why?
If a function is convex and has a local minimum, that
local minimum must be a global minimum.

In other words, gradient descent won't get
stuck/terminate in local minimums that aren’t global
minimums.



Nonconvexity and gradient descent

We say a function is nonconvex if it does not meet the
criteria for convexity.

Nonconvex functions are (relatively) hard to minimize.

Gradient descent can still be useful, but it's not
guaranteed to converge to a global minimum.

We saw this when trying to minimize R ,(h) with a

smaller g.



Second derivative test for convexity

If f(x) is a function of a single variable and is twice
differentiable, then:

f(x) is convex if and only if ¢ f( x) 2 0 for all x.

\/Example f(x) = x* is convex. :g; -f (’X) L{%
Fx) = Jo?’X
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Convexity of empirical risk

If L(h, y) is a convex function (when y is fixed) then

1 n
—> Lh,y,)
i=1
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is convex.
More generally, sums of convex functions are convex.

What does this mean?

If a loss function is convex, then the corresponding
empirical risk will also be convex.



Convexity of loss functions
Is Lo (h,y) = (y - h)? convex? Yes or No.
Is L ,.(h,y) = |y - h| convex? Yes or No.

Is L, .4(h,y) convex? Yes or No.
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Convexity of R __,

A function can be convex in a region.

If 0 is large, R ,4(h) is convex in a big region around data.

A large o led to a very smooth, parabolic-looking
empirical risk function with a single local minimum
(which was a global minimum).

If o is small, R, .,(h) is convex in only small regions.

A small o led to a very bumpy empirical risk function
with many local minimums.



Discussion Question

Recall the empirical risk for absolute loss,

1 n
Rops(h) = = > 1y; = hl
i=1

IsR,,s(h) convex? Is gradient descent guaranteed to find
a global minimum, given an appropriate step size?

a) YES convex, YES guaranteed

b) YES convex, NOT guaranteed
c) NOT convex, YES guaranteed
c) NOT convex, NOT guaranteed




Summary



Summary

Gradient descent is a general tool used to minimize
differentiable functions.

Convex functions are (relatively) easy to optimize with
gradient descent.

We like convex loss functions, such as the squared loss
and absolute loss, because the corresponding empirical
risk functions are also convex.



What's next?

So far, we've been predicting future values (salary, for
instance) without using any information about the
individual.

GPA.

Years of experience.

Number of LinkedIn connections.

Major.

How do we incorporate this information into our
prediction-making process?



