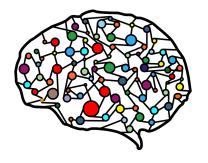
Lecture 9 – Regression in Action and Linear Algebra Review



DSC 40A, Spring 2023

Announcements

- ► Homework 3 is due **Tuesday at 11:59pm**.
 - Come to office hours. See dsc40a.com/calendar for the schedule.
 - It's a pretty long homework. Start early!
- Solutions to Groupwork 3 and Homework 2 are now available on Campuswire.
 - Reviewing them will help you on upcoming assignments and exams.

Agenda

- Recap of Lecture 8.
- Connection with correlation.
- Interpretation of formulas.
- Regression demo.
- Linear algebra review.

Recap of Lecture 8

The best linear prediction rule

Last time, we used multivariable calculus to find the slope w_1^* and intercept w_0^* that minimized the MSE for a linear prediction rule of the form .

e form .
$$H(x) = W_0 + W_1 x$$

► In other words, we minimized this function:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Optimal parameters

We found the optimal parameters to be:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$w_0^* = \bar{y} - w_1 \bar{x}$$

To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

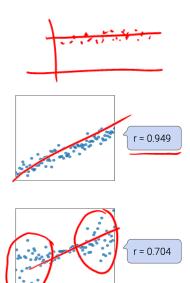
► This line is the **regression line**.

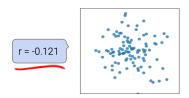
Connection with correlation

Correlation coefficient

- ► In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the **linear** association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - It ranges between -1 and 1.

Patterns in scatter plots





Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.

> x_i in standard units is $\frac{x_i - \bar{x}}{\sigma_x}$. S Ds above

ion coefficient is
$$r = \frac{1}{n} \sum_{i=1}^{n} \frac{x_i - \bar{x}}{\sigma_x} \left(\frac{y_i - \bar{y}}{\sigma_y} \right)$$
Standard units

Another way to express W_1^*

It turns out that w_1^* , the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_1^* = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = r\frac{\sigma_y}{\sigma_x}$$
From DSC

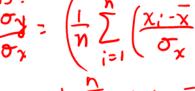
It's not surprising that r is related to w_1^* , since r is a measure of linear association.

of writing
$$w_0$$
 and w_1 :
$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

Proof that
$$w_1^* = r \frac{\sigma_y}{\sigma_x}$$

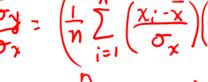
This:
$$r \frac{\sigma_y}{\sigma_y} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{\chi_i - \overline{\chi}}{\sigma_x}\right) \left(\frac{y_i - \overline{y}}{\sigma_y}\right)\right) \frac{\sigma_y}{\sigma_x}$$

$$\frac{\partial}{\partial x} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \overline{x}}{\sigma_x}\right)\right)$$

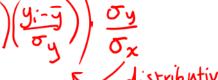


$$\frac{\partial x}{\partial x} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - x}{\sigma_x}\right)\right)$$

$$\sum_{x} = \left(\frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_{i-x}}{\sigma_{x}}\right)\right)^{i}$$





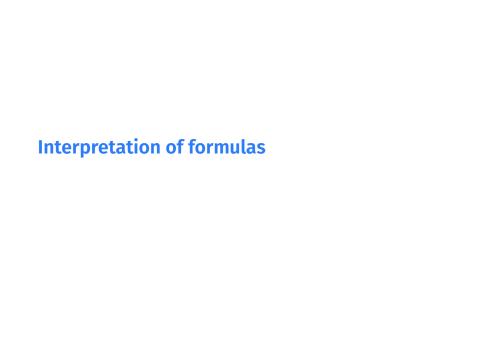




- $=\frac{1}{n}\sum_{i}\left(\frac{x_{i}-x_{i}}{\sigma_{x}}\right)\left(\frac{y_{i}-y_{i}}{\sigma_{x}}\right)\left(\frac{\sigma_{x}}{\sigma_{x}}\right)$

 $\leftarrow (\sigma_{x})^{2}$

- $=\frac{1}{n}\cdot\frac{1}{(\sigma_x)}\sum_{i=1}^{n}(x_i-\bar{x})(y_i-\bar{y})$



Interpreting the slope

represents how much took

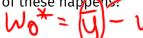
more some $\frac{\sigma_y}{w_1^*} = r \frac{\sigma_y}{\sigma_x}$ where $\frac{\sigma_y}{\sigma_x}$ is a constant of the constant of

- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_y increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Interpreting the intercept 1102 (00K) What is $H^*(\bar{x})$?

Discussion Question

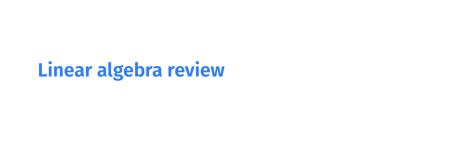
We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?



5000

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same

Regression demo



Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
 - use multiple features.
 - are non-linear.
- ▶ Before we dive in, let's review.

Matrices & Files

- An $\underline{m} \times n$ matrix is a table of numbers with m rows and n columns.
- We use upper-case letters for matrices.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$$

 \triangleright A^T denotes the transpose of A:

$$A^{T} = \begin{bmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{bmatrix} 3 \times 2$$

Matrix addition and scalar multiplication

- ▶ We can add two matrices only if they are the same size.
- Addition occurs elementwise:

$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} + \begin{bmatrix} 7 & 8 & 9 \\ -1 & -2 & -3 \end{bmatrix} = \begin{bmatrix} 8 & 10 & 12 \\ 3 & 3 & 3 \end{bmatrix}$$

Scalar multiplication occurs elementwise, too:

$$2 \cdot \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 6 \\ 8 & 10 & 12 \end{bmatrix}$$

Matrix-matrix multiplication

- We can multiply two matrices A and B only if # columns in A = # rows in B.
- If A is m × n and B is n × p, the result is m × p.
 This is very useful.
- The *ij* entry of the product is:



Some matrix properties

► Multiplication is Distributive:

$$A(B+C) = AB + AC$$

Multiplication is Associative:

$$(AB)C = A(BC)$$

Multiplication is not commutative:

can't change

Transpose of sum:

$$(A+B)^T = A^T + B^T$$

Transpose of product:

$$(AB)^T = B^T A^T \leftarrow 0 \text{ rder switches}$$

Vectors

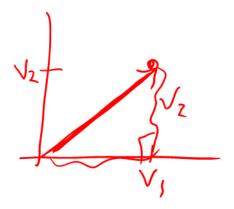
- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- (one-column
- We use lower-case letters for vectors.

$$\vec{V} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.



► The length, or norm, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$.

Dot products

The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_{i} v_{i} = u_{1} v_{1} + u_{2} v_{2} + \dots + u_{n} v_{n}$$
t is a scalar.

The result is a scalar!

corresponding entries add them all up

Discussion Question

Which of these is another expression for the length of \vec{u} ?

don't make sense Can't square vecto.

Properties of the dot product

Commutative:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^T \vec{v} = \vec{v}^T \vec{u}$$

Distributive:

$$\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- Result is always a vector with same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^n , what are the dimensions of the product $\vec{v}^T A^T A \vec{v}$?

- a) $m \times n$ (matrix)
- b) $n \times 1$ (vector)
- c) 1 × 1 (scalar)
- d) The product is undefined.

Summary

Summary, next time

We can re-write the optimal parameters for the regression line

$$w_1^* = r \frac{\sigma_y}{\sigma_y}$$
 $w_0^* = \bar{y} - w_1^* \bar{x}$

- We can then make predictions using $H^*(x) = w_0^* + w_1^*x$.
- We will need linear algebra in order to generalize regression to work with multiple features.
- Next time: Continue linear algebra review. Formulate linear regression in terms of linear algebra.