
Lecture 10 – Regression via Linear Algebra

DSC 40A, Spring 2023



Announcements
▶ Homework 3 is due tomorrow at 11:59pm.

▶ LaTeX template provided if you want to type your
answers.

▶ Please come to office hours!

▶ Review Groupwork 3 and Homework 2 solutions on
Campuswire.

▶ Discussion section is on Wednesday.



Agenda

▶ Finish linear algebra review.

▶ Formulate mean squared error in terms of linear algebra.

▶ Minimize mean squared error using linear algebra.



Linear algebra review



Vectors
▶ An vector in ℝ𝑛 is an 𝑛 × 1 matrix.

▶ We use lower-case letters for vectors.

⃗𝑣 = [
2
1
5
−3
]

▶ Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors

▶ A vector ⃗𝑣 = (𝑣1, … , 𝑣𝑛)𝑇 is an arrow to the point (𝑣1, … , 𝑣𝑛)
from the origin.

▶ The length, or norm, of ⃗𝑣 is ‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛 .



Dot products

▶ The dot product of two vectors �⃗� and ⃗𝑣 in ℝ𝑛 is denoted
by:

�⃗� ⋅ ⃗𝑣 = �⃗�𝑇 ⃗𝑣

▶ Definition:

�⃗� ⋅ ⃗𝑣 =
𝑛
∑
𝑖=1
𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

▶ The result is a scalar!



Properties of the dot product

▶ Commutative:

�⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�

▶ Distributive:
�⃗� ⋅ ( ⃗𝑣 + �⃗�) = �⃗� ⋅ ⃗𝑣 + �⃗� ⋅ �⃗�



Matrix-vector multiplication

▶ Special case of matrix-matrix multiplication.

▶ The result is always a vector with the same number of
rows as the matrix.

▶ One view: a “mixture” of the columns.

[1 2 1
3 4 5] [

𝑎1
𝑎2
𝑎3
] = 𝑎1 [

1
3] + 𝑎2 [

2
4] + 𝑎3 [

1
5]

▶ Another view: a dot product with the rows.



Discussion Question

If 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑣 is a vector in ℝ𝑛, what are
the dimensions of the product ⃗𝑣𝑇𝐴𝑇𝐴 ⃗𝑣?
a) 𝑚 × 𝑛 (matrix)
b) 𝑛 × 1 (vector)
c) 1 × 1 (scalar)
d) The product is undefined.



Matrices and functions
▶ Suppose 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑥 is a vector in ℝ𝑛.

▶ Then, the function 𝑓( ⃗𝑥) = 𝐴𝑥 is a linear function that maps
elements in ℝ𝑛 to elements in ℝ𝑚.
▶ The input to 𝑓 is a vector, and so is the output.

▶ Key idea: matrix-vector multiplication can be thought of
as applying a linear function to a vector.



Mean squared error, revisited



Wait... why do we need linear algebra?

▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).
▶ If the intermediate steps get confusing, think back to
this overarching goal.

▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
▶ use multiple features.

▶ are non-linear.

▶ Let’s start by expressing 𝑅𝑠𝑞 in terms of matrices and
vectors.



Regression and linear algebra

▶ We chose the parameters for our prediction rule

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

by finding the 𝑤∗0 and 𝑤∗1 that minimized mean squared
error:

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2.

▶ This is kind of like the formula for the length of a vector:

‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛



Regression and linear algebra
Let’s define a few new terms:
▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with
components 𝑦𝑖. This is the vector of observed/“actual”
values.

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components
𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.



Example

Consider 𝐻(𝑥) = 1
2𝑥 + 2. ⃗𝑦 =

ℎ⃗ =

⃗𝑒 = ⃗𝑦 − ℎ⃗ =

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2 =



Regression and linear algebra

▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with
components 𝑦𝑖. This is the vector of observed/“actual”
values.

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components
𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.

▶ We can rewrite the mean squared error as:

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2 =

1
𝑛|| ⃗𝑒||

2 = 1𝑛|| ⃗𝑦 − ℎ⃗||
2.



The hypothesis vector

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ For the linear prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥, the
hypothesis vector ℎ⃗ can be written

ℎ⃗ = [

𝐻(𝑥1)
𝐻(𝑥2)

..

.

𝐻(𝑥𝑛)

] = [

𝑤0 + 𝑤1𝑥1
𝑤0 + 𝑤1𝑥2

..

.

𝑤0 + 𝑤1𝑥𝑛

] =



Rewriting the mean squared error
▶ Define the design matrix 𝑋 to be the 𝑛 × 2 matrix

𝑋 = [

1 𝑥1
1 𝑥2
..
.

..

.

1 𝑥𝑛

] .

▶ Define the parameter vector �⃗� ∈ ℝ2 to be �⃗� = [𝑤0𝑤1
] .

▶ Then ℎ⃗ = 𝑋�⃗�, so the mean squared error becomes:

𝑅sq(𝐻) =
1
𝑛|| ⃗𝑦 − ℎ⃗||

2

𝑅sq(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2



Mean squared error, reformulated
▶ Before, we found the values of 𝑤0 and 𝑤1 that minimized

𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ The results:

𝑤∗1 =
∑𝑛𝑖=1(𝑥𝑖 − �̄�)(𝑦𝑖 − �̄�)
∑𝑛𝑖=1(𝑥𝑖 − �̄�)2

= 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = �̄� − 𝑤∗1�̄�

▶ Now, our goal is to find the vector �⃗� that minimizes

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ Both versions of 𝑅𝑠𝑞 are equivalent. The results will also
be equivalent.



Spoiler alert...

▶ Goal: find the vector �⃗� that minimizes

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ Spoiler alert: the answer1 is

⃗𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ Let’s look at this formula in action in a notebook. Follow
along here.

▶ Then we’ll prove it ourselves by hand.

1assuming 𝑋𝑇𝑋 is invertible

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec10/lec10.ipynb
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec10/lec10.ipynb


Minimizing mean squared error, again



Some key linear algebra facts
If 𝐴 and 𝐵 are matrices, and �⃗�, ⃗𝑣, �⃗�, ⃗𝑧 are vectors:

▶ (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

▶ (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

▶ �⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�

▶ ‖�⃗�‖2 = �⃗� ⋅ �⃗�

▶ (�⃗� + ⃗𝑣) ⋅ (�⃗� + ⃗𝑧) = �⃗� ⋅ �⃗� + �⃗� ⋅ ⃗𝑧 + ⃗𝑣 ⋅ �⃗� + ⃗𝑣 ⋅ ⃗𝑧



Goal
▶ We want to minimize the mean squared error:

𝑅sq(�⃗�) =
1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

▶ Strategy: Calculus.

▶ Problem: This is a function of a vector. What does it even
mean to take the derivative of 𝑅sq(�⃗�) with respect to a
vector �⃗�?



A function of a vector
▶ Solution: A function of a vector is really just a function of
multiple variables, which are the components of the
vector. In other words,

𝑅sq(�⃗�) = 𝑅sq(𝑤0, 𝑤1, … , 𝑤𝑑)

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector �⃗�.2

▶ We know how to deal with derivatives of multivariable
functions: the gradient!

2In our case, �⃗� has just two components, 𝑤0 and 𝑤1. We’ll be more
general since we eventually want to use prediction rules with even more
parameters.



The gradient with respect to a vector

▶ The gradient of 𝑅sq(�⃗�) with respect to �⃗� is the vector of
partial derivatives:

∇�⃗�𝑅sq(�⃗�) =
𝑑𝑅sq
𝑑�⃗� =

⎡⎢⎢⎢⎢⎢⎢

⎣

𝜕𝑅sq
𝜕𝑤0
𝜕𝑅sq
𝜕𝑤1

..

.

𝜕𝑅sq
𝜕𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector �⃗�.



Example gradient calculation
Example: Suppose 𝑓( ⃗𝑥) = �⃗� ⋅ ⃗𝑥, where �⃗� and ⃗𝑥 are vectors in ℝ𝑛.
What is 𝑑

𝑑 ⃗𝑥𝑓( ⃗𝑥)?



Goal
▶ We want to minimize the mean squared error:

𝑅sq(�⃗�) =
1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

▶ Strategy:
1. Compute the gradient of 𝑅sq(�⃗�).
2. Set it to zero and solve for �⃗�.

▶ The result is called �⃗�∗.

▶ Let’s start by rewriting the mean squared error in a way
that will make it easier to compute its gradient.



Rewriting mean squared error
𝑅sq(�⃗�) =

1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

Discussion Question

Which of the following is equivalent to 𝑅sq(�⃗�) ?

a) 1
𝑛 ( ⃗𝑦 − 𝑋�⃗�) ⋅ (𝑋�⃗� − 𝑦)

b) 1
𝑛√( ⃗𝑦 − 𝑋�⃗�) ⋅ (𝑦 − 𝑋�⃗�)

c) 1
𝑛 ( ⃗𝑦 − 𝑋�⃗�)

𝑇 (𝑦 − 𝑋�⃗�)
d) 1

𝑛 ( ⃗𝑦 − 𝑋�⃗�)(𝑦 − 𝑋�⃗�)
𝑇



Rewriting mean squared error
𝑅sq(�⃗�) =

1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2



Rewriting mean squared error
𝑅sq(�⃗�) =



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]

▶ 𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) = 0.
▶ Why? ⃗𝑦 is a constant with respect to �⃗�.

▶ 𝑑
𝑑�⃗� (2⃗𝑋

𝑇 ⃗𝑦 ⋅ �⃗�) = 2𝑋𝑇𝑦.
▶ Why? We already showed 𝑑

𝑑 ⃗𝑥 �⃗� ⋅ ⃗𝑥 = �⃗�.

▶ 𝑑
𝑑�⃗� (�⃗�

𝑇𝑋𝑇𝑋�⃗�) = 2𝑋𝑇𝑋�⃗�.
▶ Why? See Homework 4.



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]



The normal equations
▶ To minimize 𝑅sq(�⃗�), set its gradient to zero and solve for
�⃗�:

−2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋�⃗� = 0
⟹ 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form, called the
normal equations.

▶ If 𝑋𝑇𝑋 is invertible, the solution is
�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ This is equivalent to the formulas for 𝑤∗0 and 𝑤∗1 we saw
before!
▶ Benefit – this can be easily extended to more
complex prediction rules.



Summary



Summary

▶ We used linear algebra to rewrite the mean squared error
for the prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 as

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ X is called the design matrix, �⃗� is called the
parameter vector, ⃗𝑦 is called the observation vector,
and ℎ⃗ = 𝑋�⃗� is called the hypothesis vector.

▶ We minimized 𝑅𝑠𝑞(�⃗�) using multivariable calculus and
found that the minimizing �⃗� satisfies the normal
equations, 𝑋𝑇𝑋�⃗� = 𝑋𝑇𝑦.
▶ If 𝑋𝑇𝑋 is invertible, the solution is:

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



What’s next?
▶ The whole point of reformulating linear regression in
terms of linear algebra was so that we could generalize
our work to more sophisticated prediction rules.
▶ Note that when deriving the normal equations, we
didn’t assume that there was just one feature.

▶ Examples of the types of prediction rules we’ll be able to
fit soon:
▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.

▶ 𝐻(𝑥) = 𝑤0 + 𝑤1 cos(𝑥) + 𝑤2𝑒𝑥 .

▶ 𝐻(𝑥(1), 𝑥(2)) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2).
▶ e.g. Predicted Salary =
𝑤0 + 𝑤1(Years of Experience) + 𝑤2(GPA).


