
Lecture 10 – Regression via Linear Algebra

DSC 40A, Spring 2023



Announcements
▶ Homework 3 is due tomorrow at 11:59pm.

▶ LaTeX template provided if you want to type your
answers.

▶ Please come to office hours!

▶ Review Groupwork 3 and Homework 2 solutions on
Campuswire.

▶ Discussion section is on Wednesday.



Agenda

▶ Finish linear algebra review.

▶ Formulate mean squared error in terms of linear algebra.

▶ Minimize mean squared error using linear algebra.



Linear algebra review



Vectors
▶ An vector in ℝ𝑛 is an 𝑛 × 1 matrix.

▶ We use lower-case letters for vectors.

⃗𝑣 = [
2
1
5
−3
]

▶ Vector addition and scalar multiplication occur
elementwise.



Geometric meaning of vectors

▶ A vector ⃗𝑣 = (𝑣1, … , 𝑣𝑛)𝑇 is an arrow to the point (𝑣1, … , 𝑣𝑛)
from the origin.

▶ The length, or norm, of ⃗𝑣 is ‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛 .



Dot products

▶ The dot product of two vectors 𝑢⃗ and ⃗𝑣 in ℝ𝑛 is denoted
by:

𝑢⃗ ⋅ ⃗𝑣 = 𝑢⃗𝑇 ⃗𝑣

▶ Definition:

𝑢⃗ ⋅ ⃗𝑣 =
𝑛
∑
𝑖=1
𝑢𝑖𝑣𝑖 = 𝑢1𝑣1 + 𝑢2𝑣2 + … + 𝑢𝑛𝑣𝑛

▶ The result is a scalar!



Properties of the dot product

▶ Commutative:

𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇 𝑢⃗

▶ Distributive:
𝑢⃗ ⋅ ( ⃗𝑣 + 𝑤⃗) = 𝑢⃗ ⋅ ⃗𝑣 + 𝑢⃗ ⋅ 𝑤⃗



Matrix-vector multiplication

▶ Special case of matrix-matrix multiplication.

▶ The result is always a vector with the same number of
rows as the matrix.

▶ One view: a “mixture” of the columns.

[1 2 1
3 4 5] [

𝑎1
𝑎2
𝑎3
] = 𝑎1 [

1
3] + 𝑎2 [

2
4] + 𝑎3 [

1
5]

▶ Another view: a dot product with the rows.



Discussion Question

If 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑣 is a vector in ℝ𝑛, what are
the dimensions of the product ⃗𝑣𝑇𝐴𝑇𝐴 ⃗𝑣?
a) 𝑚 × 𝑛 (matrix)
b) 𝑛 × 1 (vector)
c) 1 × 1 (scalar)
d) The product is undefined.



Matrices and functions
▶ Suppose 𝐴 is an 𝑚 × 𝑛 matrix and ⃗𝑥 is a vector in ℝ𝑛.

▶ Then, the function 𝑓( ⃗𝑥) = 𝐴𝑥 is a linear function that maps
elements in ℝ𝑛 to elements in ℝ𝑚.
▶ The input to 𝑓 is a vector, and so is the output.

▶ Key idea: matrix-vector multiplication can be thought of
as applying a linear function to a vector.



Mean squared error, revisited



Wait... why do we need linear algebra?

▶ Soon, we’ll want to make predictions using more than one
feature (e.g. predicting salary using years of experience
and GPA).
▶ If the intermediate steps get confusing, think back to
this overarching goal.

▶ Thinking about linear regression in terms of linear
algebra will allow us to find prediction rules that
▶ use multiple features.

▶ are non-linear.

▶ Let’s start by expressing 𝑅𝑠𝑞 in terms of matrices and
vectors.



Regression and linear algebra

▶ We chose the parameters for our prediction rule

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

by finding the 𝑤∗0 and 𝑤∗1 that minimized mean squared
error:

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2.

▶ This is kind of like the formula for the length of a vector:

‖ ⃗𝑣‖ = √𝑣21 + 𝑣22 + … + 𝑣2𝑛



Regression and linear algebra
Let’s define a few new terms:
▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with
components 𝑦𝑖. This is the vector of observed/“actual”
values.

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components
𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.



Example

Consider 𝐻(𝑥) = 1
2𝑥 + 2. ⃗𝑦 =

ℎ⃗ =

⃗𝑒 = ⃗𝑦 − ℎ⃗ =

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2 =



Regression and linear algebra

▶ The observation vector is the vector ⃗𝑦 ∈ ℝ𝑛 with
components 𝑦𝑖. This is the vector of observed/“actual”
values.

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ The error vector is the vector ⃗𝑒 ∈ ℝ𝑛 with components
𝑒𝑖 = 𝑦𝑖 − 𝐻(𝑥𝑖). This is the vector of (signed) errors.

▶ We can rewrite the mean squared error as:

𝑅sq(𝐻) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − 𝐻(𝑥𝑖))2 =

1
𝑛|| ⃗𝑒||

2 = 1𝑛|| ⃗𝑦 − ℎ⃗||
2.



The hypothesis vector

▶ The hypothesis vector is the vector ℎ⃗ ∈ ℝ𝑛 with
components 𝐻(𝑥𝑖). This is the vector of predicted values.

▶ For the linear prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥, the
hypothesis vector ℎ⃗ can be written

ℎ⃗ = [

𝐻(𝑥1)
𝐻(𝑥2)

..

.

𝐻(𝑥𝑛)

] = [

𝑤0 + 𝑤1𝑥1
𝑤0 + 𝑤1𝑥2

..

.

𝑤0 + 𝑤1𝑥𝑛

] =



Rewriting the mean squared error
▶ Define the design matrix 𝑋 to be the 𝑛 × 2 matrix

𝑋 = [

1 𝑥1
1 𝑥2
..
.

..

.

1 𝑥𝑛

] .

▶ Define the parameter vector 𝑤⃗ ∈ ℝ2 to be 𝑤⃗ = [𝑤0𝑤1
] .

▶ Then ℎ⃗ = 𝑋𝑤⃗, so the mean squared error becomes:

𝑅sq(𝐻) =
1
𝑛|| ⃗𝑦 − ℎ⃗||

2

𝑅sq(𝑤⃗) =
1
𝑛|| ⃗𝑦 − 𝑋𝑤⃗||

2



Mean squared error, reformulated
▶ Before, we found the values of 𝑤0 and 𝑤1 that minimized

𝑅𝑠𝑞(𝑤0, 𝑤1) =
1
𝑛

𝑛
∑
𝑖=1
(𝑦𝑖 − (𝑤0 + 𝑤1𝑥𝑖))

2

▶ The results:

𝑤∗1 =
∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)
∑𝑛𝑖=1(𝑥𝑖 − 𝑥̄)2

= 𝑟
𝜎𝑦
𝜎𝑥

𝑤∗0 = 𝑦̄ − 𝑤∗1𝑥̄

▶ Now, our goal is to find the vector 𝑤⃗ that minimizes

𝑅𝑠𝑞(𝑤⃗) =
1
𝑛|| ⃗𝑦 − 𝑋𝑤⃗||

2

▶ Both versions of 𝑅𝑠𝑞 are equivalent. The results will also
be equivalent.



Spoiler alert...

▶ Goal: find the vector 𝑤⃗ that minimizes

𝑅𝑠𝑞(𝑤⃗) =
1
𝑛|| ⃗𝑦 − 𝑋𝑤⃗||

2

▶ Spoiler alert: the answer1 is

⃗𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ Let’s look at this formula in action in a notebook. Follow
along here.

▶ Then we’ll prove it ourselves by hand.

1assuming 𝑋𝑇𝑋 is invertible

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec10/lec10.ipynb
http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec10/lec10.ipynb


Minimizing mean squared error, again



Some key linear algebra facts
If 𝐴 and 𝐵 are matrices, and 𝑢⃗, ⃗𝑣, 𝑤⃗, ⃗𝑧 are vectors:

▶ (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

▶ (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

▶ 𝑢⃗ ⋅ ⃗𝑣 = ⃗𝑣 ⋅ 𝑢⃗ = 𝑢⃗𝑇 ⃗𝑣 = ⃗𝑣𝑇 𝑢⃗

▶ ‖𝑢⃗‖2 = 𝑢⃗ ⋅ 𝑢⃗

▶ (𝑢⃗ + ⃗𝑣) ⋅ (𝑤⃗ + ⃗𝑧) = 𝑢⃗ ⋅ 𝑤⃗ + 𝑢⃗ ⋅ ⃗𝑧 + ⃗𝑣 ⋅ 𝑤⃗ + ⃗𝑣 ⋅ ⃗𝑧



Goal
▶ We want to minimize the mean squared error:

𝑅sq(𝑤⃗) =
1
𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2

▶ Strategy: Calculus.

▶ Problem: This is a function of a vector. What does it even
mean to take the derivative of 𝑅sq(𝑤⃗) with respect to a
vector 𝑤⃗?



A function of a vector
▶ Solution: A function of a vector is really just a function of
multiple variables, which are the components of the
vector. In other words,

𝑅sq(𝑤⃗) = 𝑅sq(𝑤0, 𝑤1, … , 𝑤𝑑)

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector 𝑤⃗.2

▶ We know how to deal with derivatives of multivariable
functions: the gradient!

2In our case, 𝑤⃗ has just two components, 𝑤0 and 𝑤1. We’ll be more
general since we eventually want to use prediction rules with even more
parameters.



The gradient with respect to a vector

▶ The gradient of 𝑅sq(𝑤⃗) with respect to 𝑤⃗ is the vector of
partial derivatives:

∇𝑤⃗𝑅sq(𝑤⃗) =
𝑑𝑅sq
𝑑𝑤⃗ =

⎡⎢⎢⎢⎢⎢⎢

⎣

𝜕𝑅sq
𝜕𝑤0
𝜕𝑅sq
𝜕𝑤1

..

.

𝜕𝑅sq
𝜕𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector 𝑤⃗.



Example gradient calculation
Example: Suppose 𝑓( ⃗𝑥) = 𝑎⃗ ⋅ ⃗𝑥, where 𝑎⃗ and ⃗𝑥 are vectors in ℝ𝑛.
What is 𝑑

𝑑 ⃗𝑥𝑓( ⃗𝑥)?



Goal
▶ We want to minimize the mean squared error:

𝑅sq(𝑤⃗) =
1
𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2

▶ Strategy:
1. Compute the gradient of 𝑅sq(𝑤⃗).
2. Set it to zero and solve for 𝑤⃗.

▶ The result is called 𝑤⃗∗.

▶ Let’s start by rewriting the mean squared error in a way
that will make it easier to compute its gradient.



Rewriting mean squared error
𝑅sq(𝑤⃗) =

1
𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2

Discussion Question

Which of the following is equivalent to 𝑅sq(𝑤⃗) ?

a) 1
𝑛 ( ⃗𝑦 − 𝑋𝑤⃗) ⋅ (𝑋𝑤⃗ − 𝑦)

b) 1
𝑛√( ⃗𝑦 − 𝑋𝑤⃗) ⋅ (𝑦 − 𝑋𝑤⃗)

c) 1
𝑛 ( ⃗𝑦 − 𝑋𝑤⃗)

𝑇 (𝑦 − 𝑋𝑤⃗)
d) 1

𝑛 ( ⃗𝑦 − 𝑋𝑤⃗)(𝑦 − 𝑋𝑤⃗)
𝑇



Rewriting mean squared error
𝑅sq(𝑤⃗) =

1
𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2



Rewriting mean squared error
𝑅sq(𝑤⃗) =



Compute the gradient

𝑑𝑅sq
𝑑𝑤⃗ = 𝑑

𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])

= 1𝑛 [
𝑑
𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑
𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]



Compute the gradient

𝑑𝑅sq
𝑑𝑤⃗ = 𝑑

𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])

= 1𝑛 [
𝑑
𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑
𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]

▶ 𝑑
𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) = 0.
▶ Why? ⃗𝑦 is a constant with respect to 𝑤⃗.

▶ 𝑑
𝑑𝑤⃗ (2⃗𝑋

𝑇 ⃗𝑦 ⋅ 𝑤⃗) = 2𝑋𝑇𝑦.
▶ Why? We already showed 𝑑

𝑑 ⃗𝑥 𝑎⃗ ⋅ ⃗𝑥 = 𝑎⃗.

▶ 𝑑
𝑑𝑤⃗ (𝑤⃗

𝑇𝑋𝑇𝑋𝑤⃗) = 2𝑋𝑇𝑋𝑤⃗.
▶ Why? See Homework 4.



Compute the gradient

𝑑𝑅sq
𝑑𝑤⃗ = 𝑑

𝑑𝑤⃗ (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ 𝑤⃗ + 𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗])

= 1𝑛 [
𝑑
𝑑𝑤⃗ ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑𝑤⃗ (2𝑋𝑇 ⃗𝑦 ⋅ 𝑤⃗) + 𝑑
𝑑𝑤⃗ (𝑤⃗𝑇𝑋𝑇𝑋𝑤⃗)]



The normal equations
▶ To minimize 𝑅sq(𝑤⃗), set its gradient to zero and solve for
𝑤⃗:

−2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋𝑤⃗ = 0
⟹ 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form, called the
normal equations.

▶ If 𝑋𝑇𝑋 is invertible, the solution is
𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ This is equivalent to the formulas for 𝑤∗0 and 𝑤∗1 we saw
before!
▶ Benefit – this can be easily extended to more
complex prediction rules.



Summary



Summary

▶ We used linear algebra to rewrite the mean squared error
for the prediction rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 as

𝑅𝑠𝑞(𝑤⃗) =
1
𝑛|| ⃗𝑦 − 𝑋𝑤⃗||

2

▶ X is called the design matrix, 𝑤⃗ is called the
parameter vector, ⃗𝑦 is called the observation vector,
and ℎ⃗ = 𝑋𝑤⃗ is called the hypothesis vector.

▶ We minimized 𝑅𝑠𝑞(𝑤⃗) using multivariable calculus and
found that the minimizing 𝑤⃗ satisfies the normal
equations, 𝑋𝑇𝑋𝑤⃗ = 𝑋𝑇𝑦.
▶ If 𝑋𝑇𝑋 is invertible, the solution is:

𝑤⃗∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦



What’s next?
▶ The whole point of reformulating linear regression in
terms of linear algebra was so that we could generalize
our work to more sophisticated prediction rules.
▶ Note that when deriving the normal equations, we
didn’t assume that there was just one feature.

▶ Examples of the types of prediction rules we’ll be able to
fit soon:
▶ 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.

▶ 𝐻(𝑥) = 𝑤0 + 𝑤1 cos(𝑥) + 𝑤2𝑒𝑥 .

▶ 𝐻(𝑥(1), 𝑥(2)) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2).
▶ e.g. Predicted Salary =
𝑤0 + 𝑤1(Years of Experience) + 𝑤2(GPA).


