Lecture 13 – Feature Engineering, Clustering

DSC 40A, Spring 2023

Announcements

- Homework 4 is due tomorrow at 11:59pm.
 - Assign pages to problems for full credit.
- No groupwork this week. Instead, TA and tutors will host a mock exam and review session on Wednesday from 7-9pm in FAH 1301.
 - Note the room change (same building).
 - You'll take the midterm from Winter 2022, when I last taught this class.

Midterm 1 is Friday during lecture

- Formula sheet will be provided for you. No other notes.
- ▶ No calculators. This implies no crazy calculations.
- Assigned seats will be posted on Campuswire.
- We will not answer questions during the exam. State your assumptions if anything is unclear.
- The exam will include long-answer homework-style questions, as well as short-answer questions such as multiple choice or filling in a numerical answer.
- The exam covers Homeworks 1 through 4, which includes today's lecture.

Midterm study strategy

- Review the written solutions to previous homeworks and groupworks.
- Identify which concepts are still iffy. Re-watch podcasts, post on Campuswire, come to office hours, use resources on course website.
- Work through past exams on course website.
- Study in groups.
- Summarize key facts and formulas.

Agenda

- ► Feature engineering.
- Taxonomy of machine learning.
- Clustering.

Feature engineering

Last time: Cars

MPG vs. Horsepower

Question: Would a linear prediction rule work well on this dataset?

A quadratic prediction rule

It looks like there's some sort of quadratic relationship between horsepower and MPG in the last scatter plot. We want to try and fit a prediction rule of the form

$$H(x) = W_0 + W_1 x + W_2 x^2$$

- Note that while this is quadratic in horsepower, it is linear in the parameters!
- We can do that, by choosing our two "features" to be x_i and x_i², respectively.

► In other words, $x_i^{(1)} = x_i$ and $x_i^{(2)} = x_i^2$.

More generally, we can create new features out of existing features.

A quadratic prediction rule

• Desired prediction rule:
$$H(x) = w_0 + w_1 x + w_2 x^2$$
.

► The resulting design matrix looks like this:

$$X = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \dots & & \\ 1 & x_n & x_n^2 \end{bmatrix}$$

To find optimal parameter vector w^{*}: solve the normal equations!

$$X^T X w^* = X^T y$$

More examples

What if we want to use a prediction rule of the form $H(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3$?

What if we want to use a prediction rule of the form $H(x) = w_1 \frac{1}{x^2} + w_2 \sin x + w_3 e^x$?

Feature engineering

- The process of creating new features out of existing information in our dataset is called feature engineering.
 - In this class, feature engineering will mostly be restricted to creating non-linear functions of existing features (as in the previous example).
 - In the future you'll learn how to do other things, like encode categorical information.

Non-linear functions of multiple features

Recall our example from last lecture of predicting sales from square footage and number of competitors. What if we want a prediction rule of the form

$$H(\text{sqft, comp}) = w_0 + w_1 \text{sqft} + w_2 \text{sqft}^2 + w_3 \text{comp} + w_4 \text{sqft} \cdot \text{comp} = w_0 + w_1 \text{s} + w_2 \text{s}^2 + w_3 \text{c} + w_4 \text{sc}$$

Make design matrix:

$$X = \begin{bmatrix} 1 & s_1 & s_1^2 & c_1 & s_1c_1 \\ 1 & s_2 & s_2^2 & c_2 & s_2c_2 \\ \dots & \dots & \dots & \dots \\ 1 & s_n & s_n^2 & c_n & s_nc_n \end{bmatrix}$$

Where s_i and c_i are square footage and number of competitors for store *i*, respectively.

Finding the optimal parameter vector, \vec{w}^*

As long as the form of the prediction rule permits us to write $\vec{h} = X\vec{w}$ for some X and \vec{w} , the mean squared error is

$$R_{\rm sq}(\vec{w}) = \frac{1}{n} \| \vec{y} - X \vec{w} \|^2$$

Regardless of the values of X and w,

$$\frac{dR_{sq}}{d\vec{w}} = 0$$

$$\implies -2X^T\vec{y} + 2X^TX\vec{w} = 0$$

$$\implies X^TX\vec{w}^* = X^T\vec{y}.$$

The normal equations still hold true!

Linear in the parameters

We can fit rules like:

$$w_0 + w_1 x + w_2 x^2$$
 $w_1 e^{-x^{(1)^2}} + w_2 \cos(x^{(2)} + \pi) + w_3 \frac{\log 2x^{(3)}}{x^{(2)}}$

- This includes arbitrary polynomials.
- We can't fit rules like:

$$w_0 + e^{w_1 x}$$
 $w_0 + \sin(w_1 x^{(1)} + w_2 x^{(2)})$

We can have any number of parameters, as long as our prediction rule is linear in the parameters, or linear when we think of it as a function of the parameters.

Determining function form

- How do we know what form our prediction rule should take?
- Sometimes, we know from theory, using knowledge about what the variables represent and how they should be related.
- Other times, we make a guess based on the data.
- Generally, start with simpler functions first.
 - Remember, the goal is to find a prediction rule that will generalize well to unseen data.

Discussion Question

Suppose you collect data on the height, or position, of a freefalling object at various times t_i . Which form should your prediction rule take to best fit the data?

- A) constant, $H(t) = w_0$
- B) linear, $H(t) = w_0 + w_1 t$
- C) quadratic, $H(t) = w_0 + w_1 t + w_2 t^2$
- D) no way to know without plotting the data

Example: Amdahl's Law

Amdahl's Law relates the runtime of a program on p processors to the time to do the sequential and nonsequential parts on one processor.

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$

Collect data by timing a program with varying numbers of processors:

Processors	Time (Hours)
1	8
2	4
4	3

Example: fitting $H(x) = w_0 + w_1 \cdot \frac{1}{x}$

Example: Amdahl's Law

The solution is:
$$t_{\rm S}$$
 = 1, $t_{\rm NS}$ = $\frac{48}{7}$ ≈ 6.86

Therefore our prediction rule is:

$$H(p) = t_{\rm S} + \frac{t_{\rm NS}}{p}$$
$$= 1 + \frac{6.86}{p}$$

Transformations

How do we fit prediction rules that aren't linear in the parameters?

Suppose we want to fit the prediction rule

 $H(x) = w_0 e^{w_1 x}$

This is **not** linear in terms of w_0 and w_1 , so our results for linear regression don't apply.

Possible Solution: Try to apply a **transformation**.

Transformations

• **Question:** Can we re-write $H(x) = w_0 e^{w_1 x}$ as a prediction rule that **is** linear in the parameters?

Transformations

- Solution: Create a new prediction rule, T(x), with parameters b_0 and b_1 , where $T(x) = b_0 + b_1 x$.
 - ► This prediction rule is related to H(x) by the relationship $T(x) = \log H(x)$.
 - ▶ \vec{b} is related to \vec{w} by $b_0 = \log w_0$ and $b_1 = w_1$.

• Our new observation vector,
$$\vec{z}$$
, is $\begin{bmatrix} \log y_1 \\ \log y_2 \\ ... \\ \log y_n \end{bmatrix}$.

- T(x) = $b_0 + b_1 x$ is linear in its parameters, b_0 and b_1 .
- ▶ Use the solution to the normal equations to find \vec{b}^* , and the relationship between \vec{b} and \vec{w} to find \vec{w}^* .

Demo

Let's try this out in a Jupyter notebook. Follow along here.

Non-linear prediction rules in general

- Sometimes, it's just not possible to transform a prediction rule to be linear in terms of some parameters.
- In those cases, you'd have to resort to other methods of finding the optimal parameters.
 - For example, with $H(x) = w_0 e^{w_1 x}$, we could use gradient descent or a similar method to minimize mean squared error, $R(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i w_0 e^{w_1 x_i})^2$, and find w_0^*, w_1^* that way.
- Prediction rules that are linear in the parameters are much easier to work with.

Taxonomy of machine learning

What is machine learning?

- One definition: Machine learning is about getting a computer to find patterns in data.
- Have we been doing machine learning in this class? Yes.
 Given a dataset containing salaries, predict what my future salary is going to be.
 - Given a dataset containing years of experience, GPAs, and salaries, predict what my future salary is going to be given my years of experience and GPA.

¹taken from Joseph Gonzalez @ UC Berkeley

Clustering

Question: how might we "cluster" these points into groups?

Problem statement: clustering

Goal: Given a list of *n* data points, stored as vectors in \mathbb{R}^d , $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, and a positive integer *k*, **place the data points into** *k* **groups of nearby points**.

- These groups are called "clusters".
- ► Think about groups as **colors**.
 - i.e., the goal of clustering is to assign each point a color, such that points of the same color are close to one another.
- Note, unlike with regression, there is no "right answer" that we are trying to predict — there is no y!
 - Clustering is an unsupervised method.

How do we define a group?

One solution: pick k cluster centers, i.e. centroids:

 $\vec{\mu}_1, \vec{\mu}_2, ..., \vec{\mu}_k$ in \mathbb{R}^d

- These *k* centroids define the *k* groups.
- Each data point "belongs" to the group corresponding to the nearest centroid.
- This reduces our problem from being "find the best group for each data point" to being "find the best locations for the centroids".

How do we pick the centroids?

- Let's come up with an cost function, C, which describes how good a set of centroids is.
 - Cost functions are a generalization of empirical risk functions.
- One possible cost function:

 $C(\mu_1, \mu_2, ..., \mu_k)$ = total squared distance of each data point \vec{x}_i to its closest centroid μ_i

- This C has a special name, inertia.
- Lower values of C lead to "better" clusterings.
 - ▶ **Goal:** Find the centroids $\mu_1, \mu_2, ..., \mu_k$ that minimize C.

Discussion Question

Suppose we have *n* data points, $\vec{x}_1, \vec{x}_2, ..., \vec{x}_n$, each of which are in \mathbb{R}^d .

Suppose we want to cluster our dataset into *k* clusters. How many ways can we assign points to clusters?

How do we minimize inertia?

- Problem: there are exponentially many possible clusterings. It would take too long to try them all.
- Another Problem: we can't use calculus or algebra to minimize C, since to calculate C we need to know which points are in which clusters.
- We need another solution.

k-Means Clustering, i.e. Lloyd's Algorithm

Here's an algorithm that attemps to minimize inertia:

- 1. Pick a value of k and randomly initialize k centroids.
- Keep the centroids fixed, and update the groups.
 Assign each point to the nearest centroid.
- 3. Keep the groups fixed, and update the centroids.
 Move each centroid to the center of its group.
- 4. Repeat steps 2 and 3 until the centroids stop changing.

Example

See the following site for an interactive visualization of k-Means Clustering: https://tinyurl.com/40akmeans

Summary, next time

Summary

- The process of creating new features is called feature engineering.
- As long as our prediction rule is linear in terms of its parameters $w_0, w_1, ..., w_d$, we can use the solution to the normal equations to find \vec{w}^* .
 - Sometimes it's possible to transform a prediction rule into one that is linear in its parameters.
- Linear regression is a form of supervised machine learning, while clustering is a form of unsupervised learning.
- Clustering aims to place data points into "groups" of points that are close to one another. k-means clustering is one method for finding clusters.

Next time

- How does k-means clustering attempt to minimize inertia?
- How do we choose good initial centroids?
- How do we choose the value of k, the number of clusters?