
Lecture 13 – Feature Engineering, Clustering

DSC 40A, Spring 2023



Announcements
▶ Homework 4 is due tomorrow at 11:59pm.

▶ Assign pages to problems for full credit.

▶ No groupwork this week. Instead, TA and tutors will host a
mock exam and review session on Wednesday from
7-9pm in FAH 1301.
▶ Note the room change (same building).

▶ You’ll take the midterm from Winter 2022, when I last
taught this class.



Midterm 1 is Friday during lecture
▶ Formula sheet will be provided for you. No other notes.

▶ No calculators. This implies no crazy calculations.

▶ Assigned seats will be posted on Campuswire.

▶ We will not answer questions during the exam. State your
assumptions if anything is unclear.

▶ The exam will include long-answer homework-style
questions, as well as short-answer questions such as
multiple choice or filling in a numerical answer.

▶ The exam covers Homeworks 1 through 4, which includes
today’s lecture.

https://dsc40a.com/resources/notes/reference_1.pdf


Midterm study strategy

▶ Review the written solutions to previous homeworks and
groupworks.

▶ Identify which concepts are still iffy. Re-watch podcasts,
post on Campuswire, come to office hours, use resources
on course website.

▶ Work through past exams on course website.

▶ Study in groups.

▶ Summarize key facts and formulas.

https://dsc40a.com/resources
https://dsc40a.com/resources


Agenda

▶ Feature engineering.

▶ Taxonomy of machine learning.

▶ Clustering.



Feature engineering



Last time: Cars

Question: Would a linear prediction rule work well on this
dataset?



A quadratic prediction rule

▶ It looks like there’s some sort of quadratic relationship
between horsepower and MPG in the last scatter plot. We
want to try and fit a prediction rule of the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2

▶ Note that while this is quadratic in horsepower, it is
linear in the parameters!

▶ We can do that, by choosing our two “features” to be 𝑥𝑖
and 𝑥2𝑖 , respectively.
▶ In other words, 𝑥(1)𝑖 = 𝑥𝑖 and 𝑥

(2)
𝑖 = 𝑥2𝑖 .

▶ More generally, we can create new features out of
existing features.



A quadratic prediction rule

▶ Desired prediction rule: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.

▶ The resulting design matrix looks like this:

𝑋 = [
1 𝑥1 𝑥21
1 𝑥2 𝑥22
...
1 𝑥𝑛 𝑥2𝑛

]

▶ To find optimal parameter vector 𝑤⃗∗: solve the normal
equations!

𝑋𝑇𝑋𝑤∗ = 𝑋𝑇𝑦



More examples

▶ What if we want to use a prediction rule of the form
𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3?

▶ What if we want to use a prediction rule of the form
𝐻(𝑥) = 𝑤1

1
𝑥2 + 𝑤2 sin 𝑥 + 𝑤3𝑒𝑥?



Feature engineering

▶ The process of creating new features out of existing
information in our dataset is called feature engineering.
▶ In this class, feature engineering will mostly be
restricted to creating non-linear functions of existing
features (as in the previous example).

▶ In the future you’ll learn how to do other things, like
encode categorical information.



Non-linear functions of multiple features

▶ Recall our example from last lecture of predicting sales
from square footage and number of competitors. What if
we want a prediction rule of the form

𝐻(sqft, comp) = 𝑤0 + 𝑤1sqft + 𝑤2sqft
2

+ 𝑤3comp + 𝑤4sqft ⋅ comp
= 𝑤0 + 𝑤1𝑠 + 𝑤2𝑠2 + 𝑤3𝑐 + 𝑤4𝑠𝑐

▶ Make design matrix:

𝑋 = ⎡⎢⎢

⎣

1 𝑠1 𝑠21 𝑐1 𝑠1𝑐1
1 𝑠2 𝑠22 𝑐2 𝑠2𝑐2
... ... ... ...
1 𝑠𝑛 𝑠2𝑛 𝑐𝑛 𝑠𝑛𝑐𝑛

⎤⎥⎥

⎦

Where 𝑠𝑖 and 𝑐𝑖 are
square footage and
number of competitors
for store 𝑖, respectively.



Finding the optimal parameter vector, 𝑤⃗∗

▶ As long as the form of the prediction rule permits us to
write ℎ⃗ = 𝑋𝑤⃗ for some 𝑋 and 𝑤⃗, the mean squared error is

𝑅sq(𝑤⃗) =
1
𝑛‖ ⃗𝑦 − 𝑋𝑤⃗‖2

▶ Regardless of the values of 𝑋 and 𝑤⃗,

𝑑𝑅sq
𝑑𝑤⃗ = 0

⟹ − 2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋𝑤⃗ = 0
⟹ 𝑋𝑇𝑋𝑤⃗∗ = 𝑋𝑇 ⃗𝑦.

▶ The normal equations still hold true!



Linear in the parameters

▶ We can fit rules like:

𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 𝑤1𝑒−𝑥
(1)2 + 𝑤2 cos(𝑥(2) + 𝜋) + 𝑤3

log2𝑥(3)
𝑥(2)

▶ This includes arbitrary polynomials.

▶ We can’t fit rules like:

𝑤0 + 𝑒𝑤1𝑥 𝑤0 + sin(𝑤1𝑥(1) + 𝑤2𝑥(2))

▶ We can have any number of parameters, as long as our
prediction rule is linear in the parameters, or linear when
we think of it as a function of the parameters.



Determining function form

▶ How do we know what form our prediction rule should
take?

▶ Sometimes, we know from theory, using knowledge about
what the variables represent and how they should be
related.

▶ Other times, we make a guess based on the data.

▶ Generally, start with simpler functions first.
▶ Remember, the goal is to find a prediction rule that
will generalize well to unseen data.



Discussion Question

Suppose you collect data on the height, or position, of a
freefalling object at various times 𝑡𝑖. Which form should
your prediction rule take to best fit the data?

A) constant, 𝐻(𝑡) = 𝑤0
B) linear, 𝐻(𝑡) = 𝑤0 + 𝑤1𝑡
C) quadratic, 𝐻(𝑡) = 𝑤0 + 𝑤1𝑡 + 𝑤2𝑡2
D) no way to know without plotting the data



Example: Amdahl’s Law

▶ Amdahl’s Law relates the runtime of a program on 𝑝
processors to the time to do the sequential and
nonsequential parts on one processor.

𝐻(𝑝) = 𝑡S +
𝑡NS
𝑝

▶ Collect data by timing a program with varying numbers of
processors:

Processors Time (Hours)
1 8
2 4
4 3



Example: fitting 𝐻(𝑥) = 𝑤0 + 𝑤1 ⋅
1
𝑥

𝑥𝑖 𝑦𝑖
1 8
2 4
4 3



Example: Amdahl’s Law

▶ The solution is: 𝑡S = 1, 𝑡NS =
48
7 ≈ 6.86

▶ Therefore our prediction rule is:

𝐻(𝑝) = 𝑡S +
𝑡NS
𝑝

= 1 + 6.86𝑝



Transformations



How do we fit prediction rules that aren’t linear
in the parameters?

▶ Suppose we want to fit the prediction rule

𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥

This is not linear in terms of 𝑤0 and 𝑤1, so our results for
linear regression don’t apply.

▶ Possible Solution: Try to apply a transformation.



Transformations

▶ Question: Can we re-write 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 as a prediction
rule that is linear in the parameters?



Transformations

▶ Solution: Create a new prediction rule, 𝑇(𝑥), with
parameters 𝑏0 and 𝑏1, where 𝑇(𝑥) = 𝑏0 + 𝑏1𝑥.
▶ This prediction rule is related to 𝐻(𝑥) by the
relationship 𝑇(𝑥) = log𝐻(𝑥).

▶ 𝑏⃗ is related to 𝑤⃗ by 𝑏0 = log𝑤0 and 𝑏1 = 𝑤1.

▶ Our new observation vector, ⃗𝑧, is [
log 𝑦1
log 𝑦2
...

log 𝑦𝑛

].

▶ 𝑇(𝑥) = 𝑏0 + 𝑏1𝑥 is linear in its parameters, 𝑏0 and 𝑏1.

▶ Use the solution to the normal equations to find 𝑏⃗∗, and
the relationship between 𝑏⃗ and 𝑤⃗ to find 𝑤⃗∗.



Demo

Let’s try this out in a Jupyter notebook. Follow along here.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec13/lec13.ipynb


Non-linear prediction rules in general

▶ Sometimes, it’s just not possible to transform a prediction
rule to be linear in terms of some parameters.

▶ In those cases, you’d have to resort to other methods of
finding the optimal parameters.
▶ For example, with 𝐻(𝑥) = 𝑤0𝑒𝑤1𝑥 , we could use
gradient descent or a similar method to minimize
mean squared error, 𝑅(𝑤0, 𝑤1) =

1
𝑛 ∑

𝑛
𝑖=1 (𝑦𝑖 − 𝑤0𝑒𝑤1𝑥𝑖)

2,
and find 𝑤∗0, 𝑤∗1 that way.

▶ Prediction rules that are linear in the parameters are
much easier to work with.



Taxonomy of machine learning



What is machine learning?

▶ One definition: Machine learning is about getting a
computer to find patterns in data.

▶ Have we been doing machine learning in this class? Yes.
▶ Given a dataset containing salaries, predict what my
future salary is going to be.

▶ Given a dataset containing years of experience, GPAs,
and salaries, predict what my future salary is going to
be given my years of experience and GPA.



1
1taken from Joseph Gonzalez @ UC Berkeley



Clustering



Question: how might we “cluster” these points
into groups?



Problem statement: clustering

Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,
⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into
𝑘 groups of nearby points.

▶ These groups are called “clusters”.

▶ Think about groups as colors.
▶ i.e., the goal of clustering is to assign each point a
color, such that points of the same color are close to
one another.

▶ Note, unlike with regression, there is no “right answer”
that we are trying to predict — there is no 𝑦!
▶ Clustering is an unsupervised method.



How do we define a group?

▶ One solution: pick 𝑘 cluster centers, i.e. centroids:

𝜇⃗1, 𝜇⃗2, ..., 𝜇⃗𝑘 in ℝ𝑑

▶ These 𝑘 centroids define the 𝑘 groups.

▶ Each data point “belongs” to the group corresponding to
the nearest centroid.

▶ This reduces our problem from being “find the best group
for each data point” to being “find the best locations for
the centroids”.





How do we pick the centroids?
▶ Let’s come up with an cost function, 𝐶, which describes
how good a set of centroids is.
▶ Cost functions are a generalization of empirical risk
functions.

▶ One possible cost function:

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗

▶ This 𝐶 has a special name, inertia.

▶ Lower values of 𝐶 lead to “better” clusterings.
▶ Goal: Find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that minimize 𝐶.



Discussion Question

Suppose we have 𝑛 data points, ⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, each of
which are in ℝ𝑑 .
Suppose we want to cluster our dataset into 𝑘 clusters.
How many ways can we assign points to clusters?
A) 𝑑 ⋅ 𝑘
B) 𝑑𝑘
C) 𝑛𝑘
D) 𝑘𝑛
E) 𝑛 ⋅ 𝑘 ⋅ 𝑑



How do we minimize inertia?

▶ Problem: there are exponentially many possible
clusterings. It would take too long to try them all.

▶ Another Problem: we can’t use calculus or algebra to
minimize 𝐶, since to calculate 𝐶 we need to know which
points are in which clusters.

▶ We need another solution.



k-Means Clustering, i.e. Lloyd’s Algorithm

Here’s an algorithm that attemps to minimize inertia:
1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.

2. Keep the centroids fixed, and update the groups.
▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.
▶ Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until the centroids stop changing.



Example

See the following site for an interactive visualization of
k-Means Clustering: https://tinyurl.com/40akmeans

https://tinyurl.com/40akmeans


Summary, next time



Summary
▶ The process of creating new features is called feature
engineering.

▶ As long as our prediction rule is linear in terms of its
parameters 𝑤0, 𝑤1, ..., 𝑤𝑑 , we can use the solution to the
normal equations to find 𝑤⃗∗.
▶ Sometimes it’s possible to transform a prediction
rule into one that is linear in its parameters.

▶ Linear regression is a form of supervised machine
learning, while clustering is a form of unsupervised
learning.

▶ Clustering aims to place data points into “groups” of
points that are close to one another. k-means clustering
is one method for finding clusters.



Next time

▶ How does k-means clustering attempt to minimize inertia?

▶ How do we choose good initial centroids?

▶ How do we choose the value of 𝑘, the number of clusters?


