Lecture 13 - Feature Engineering, Clustering

DSC 40A, Spring 2023



Announcements

Homework 4 is due tomorrow at 11:59pm.
Assign pages to problems for full credit.

No groupwork this week. Instead, TA and tutors will host a
mock exam and review session on Wednesday from
7-9pm in FAH 1301.

Note the room change (same building).

You'll take the midterm from Winter 2022, when | last
taught this class.



Midterm 1is Friday during lecture

Formula sheet will be provided for you. No other notes.
No calculators. This implies no crazy calculations.
Assigned seats will be posted on Campuswire.

We will not answer questions during the exam. State your
assumptions if anything is unclear.

The exam will include long-answer homework-style
questions, as well as short-answer questions such as
multiple choice or filling in a numerical answer.

The exam covers Homeworks 1 through 4, which includes
today’s lecture.


https://dsc40a.com/resources/notes/reference_1.pdf

Midterm study strategy

Review the written solutions to previous homeworks and
groupworks.

Identify which concepts are still iffy. Re-watch podcasts,
post on Campuswire, come to office hours, use resources
on course website.

Work through past exams on course website.
Study in groups.

Summarize key facts and formulas.


https://dsc40a.com/resources
https://dsc40a.com/resources

Agenda

Feature engineering.
Taxonomy of machine learning.

Clustering.



Feature engineering



Last time: Cars

MPG vs. Horsepower

mpg

50 100 150 200

horsepower

Question: Would a linear prediction rule work well on this
dataset?



A quadratic prediction rule

It looks like there’s some sort of quadratic relationship
between horsepower and MPG in the last scatter plot. We
want to try and fit a prediction rule of the form L
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Note that while this is quadratic in horsepower, it is

linear in the pafdmeters'
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We can do that, by choosing our two “features” to be x;

and x,-z, respectively.
1 2
In other words, x,( - X; and xf ). x,-z.

More generally, we can create new features out of
existing features.



A quadratic prediction rule

Desired prediction rule: H(x) = w, + w, X + w, X2

The resulting design matrix looks like this: (Ui 4 IA,(’
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To find optimal parameter vector w*: solve the normal
equations!

XTXw* =Xy



More examples

What if we want to use a prediction rule of the form
H(X) = wy + W, X + W,x? +W x3?
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Feature engineering

The process of creating new features out of existing

information in our dataset is called feature engineering.
In this class, feature engineering will mostly be
restricted to creating non-linear functions of existing
features (as in the previous example).

In the future you’ll learn how to do other things, like
encode categorical information.



Non-linear functions of multiple features

Recall our example from last lecture of predicting sales
from square footage and number of competitors. What if
we want a prediction rule of the form
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Finding the optimal parameter vector, W*

As long as the form of the prediction rule permits us to
write h = Xw for some X and w, the mean squared error is

- _ 1 - - 2
Ryg 1) = ~ I - Xit|

Regardless of the values of X and W,

dRSq

dw
= -2XTy+2X"XW =0

= X"XWw* = XTy.

=0

The normal equations still hold true!



Linear in the parameters

We can fit rules like:

Vg + W e

This includes arbitrary polynomials.

We can't fit rules like:

Wy + e Wy + sin@gxV +wyx2)
We can have any number of parameters, as long as our
prediction rule is [iEaFIMEREPEFEMEEIS, or linear when
we think of it as a function of the parameters.



Determining function form

How do we know what form our prediction rule should
take?

Sometimes, we know from theory, using knowledge about
what the variables represent and how they should be
related.

Other times, we make a guess based on the data.

e

Generally, start with simpler functions first.

Remember, the goal is to find a prediction rule that
will generalize well to unseen data.



Discussion Question

Suppose you collect data on the height, or position, of a
freefalling object at various times t;. Which form should
your prediction rule take to best fit the data?

A) constant, H(t) = w,
B) linear, H(t) = w, + w,t

@uadratic, H(t) = wy + w,t + w,t?
D) no way to know without plotting the data
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Example: Amdahl's Law

Amdahl’s Law relates the runtime of a program on p
processors to the time to do the sequential and
nonsequential parts on one processor.
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Example: Amdahl’s Law
” \
The solutionis: t =1, ty = % ~ 6.86
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Therefore our prediction rule is:
t
H(p) = tg + —=
p) =1 D

6.86

=1+ —
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Transformations



How do we fit prediction rules that aren't linear
in the parameters?

Suppose we want to fit the prediction rule
H(x) = wge®™™

This is not linear in terms of w, and w,, so our results for
linear regression don’t apply.

Possible Solution: Try to apply a transformation.



Transformations

Question: Can we re-write H(x) = w,e"1* as a prediction
rule that is linear in the parameters
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Transformations

Solution: Create a new prediction rule, T(x), with
parameters b, and b,, where T(x) = b, + b, x.

This prediction rule is related to H(x) by the
relationship T(x) = log H(x).
b is related to w by b, = logw, and b, = w,.

logy,
. . |1
Our new observation vector, z, is 08y, .

log Y,

T(x) = by + b,x is linear in its parameters, b, and b.

—_————

Use the solution to the normal equations to find b*, and
the relationship between b and w to find Ww*.



Demo

Let's try this out in a Jupyter notebook. Follow along here.


http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/dsc-courses/dsc40a-2023-sp&subPath=resources/lecture/lec13/lec13.ipynb

Non-linear prediction rules in general

Sometimes, it's just not possible to transform a prediction
rule to be linear in terms of some parameters.

In those cases, you'd have to resort to other methods of
finding the optimal parameters.
For example, with H(x) = w,e"*, we could use
gradient descent or a similar method to minimize
mean squared error, R(wy, w;) = T 37 (y; - wye"ri)’,
and find wg, wy that way.

Prediction rules that are linear in the parameters are
much easier to work with.



Taxonomy of machine learning



What is machine learning?

One definition: Machine learning is about getting a
computer to find patterns in data.

Have we been doing machine learning in this class? Yes.

Given a dataset containing salaries, predict what my
future salary is going to be.

Given a dataset containing years of experience, GPAs,
and salaries, predict what my future salary is going to
be given my years of experience and GPA.
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Clustering



Question: how might we “cluster” these points
into groups?
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Problem statement: clustering g}“@p .
()

Goal: Given a list of n data points, stored as vectors |<{<§\\s

X, X5, .., X, and a positive integer R, place the data points into\'y-s

k groups of nearby points. S a\,,z
* latle

These groups are called “clusters”.

Think about groups as colors.

i.e., the goal of clustering is to assign each point a
color, such that points of the same color are close to
one another.

Note, unlike with regression, there is no “right answer”
that we are trying to predict — there is no y!

Clustering is an unsupervised method.



How do we define a group?

One solution: pick k cluster centers, i.e. centroids:

fiys s e iy, in R
(mu\) 11 H k

These k centroids define the k groups.

Each data point “belongs” to the group corresponding to
the nearest centroid.

This reduces our problem from being “find the best group
for each data point” to being “find the best locations for

the centroids”.
-_-.----_--
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How do we pick the centroids?

Let's come up with an cost function, C, which describes
how good a set of centroids is.

Cost functions are a generalization of empirical risk
functions.

One possible cost function:

C(uq, My, -y Hp,) = total squared distance of each
data point X;to its
closest centroid H;

This C has a special name, inertia.

Lower values of C lead to “better” clusterings.
Goal: Find the centroids p,, y,, ..., i, that minimize C.



Discussion Question

Suppose we have n data points, X;,X,,..,X,, each of
which are in RY.
Suppose we want to cluster our dataset into k clusters.
How many ways can we assign points to clusters?

A) d-R

B) df

C) nk

D) R"

E) n-k-d




How do we minimize inertia?

Problem: there are exponentially many possible
clusterings. It would take too long to try them all.

Another Problem: we can’t use calculus or algebra to
minimize C, since to calculate C we need to know which
points are in which clusters.

We need another solution.



k-Means Clustering, i.e. Lloyd’s Algorithm

Here's an algorithm that attemps to minimize inertia:
Pick a value of k and randomly initialize k centroids.

Keep the centroids fixed, and update the groups.
Assign each point to the nearest centroid.

Keep the groups fixed, and update the centroids.
Move each centroid to the center of its group.

Repeat steps 2 and 3 until the centroids stop changing.



Example

See the following site for an interactive visualization of
k-Means Clustering: https://tinyurl.com/40akmeans


https://tinyurl.com/40akmeans

Summary, next time



Summary

The process of creating new features is called feature
engineering.

As long as our prediction rule is linear in terms of its
parameters wy, w,, ..., W4, We can use the solution to the
normal equations to find w*.

Sometimes it's possible to transform a prediction
rule into one that is linear in its parameters.

Linear regression is a form of supervised machine
learning, while clustering is a form of unsupervised
learning.

Clustering aims to place data points into “groups” of
points that are close to one another. k-means clustering
is one method for finding clusters.



Next time

How does k-means clustering attempt to minimize inertia?
How do we choose good initial centroids?

How do we choose the value of R, the number of clusters?



