Lecture 25 - Precision and Recall

DSC 40A, Spring 2023

Announcements

- Homework 7 was due last night, but can still be turned in if you have a slip day remaining. This is the last homework!
- Midterm 2 is Monday during lecture.
- Final Exam is Saturday, June 10. Given in two separate parts, both of which are optional.
 - ▶ Part 1 is 9-9:50am. Can replace Midterm 1.
 - Part 2 is 10-10:50am. Can replace Midterm 2.
- Next week is review only. No new content.

Midterm 2 is Monday during lecture

- You may use an unlimited number of handwritten note sheets for Midterm 2 (and Final Part 2). Start working on this now as you study!
- No calculators.
- Leave all answers unsimplified in terms of permutations, combinations, factorials, exponents, etc.
- Assigned seats will be posted on Campuswire.
- We will not answer questions during the exam. State your assumptions if anything is unclear.

Midterm 2 is Monday during lecture

- The exam will definitely include short-answer questions such as multiple choice or filling in the numerical answer to a probability or combinatorics question. Short-answer questions will be graded on correctness only, so you don't need to show your work or provide explanation for these questions.
- The exam may also include long-answer homework-style questions, which would require explanation and be graded with partial credit.
- Midterm 2 covers all material that was not covered on Midterm 1. Clustering is in scope, but the vast majority will be probability and combinatorics. This week's lectures are also in scope.

Agenda

- Recap: Text classification with Naive Bayes
- Measuring quality of classification

Text classification

Recap: Naive Bayes for spam classification

To classify an email, we'll use Bayes' theorem to calculate the probability of it belonging to each class:

- We'll find the larger probability by comparing numerators, and predict that class.
- To compute the numerator, we make the naive assumption that the features are conditionally independent given the class.

Concrete example

- Dictionary: "prince", "money", "free", and "just".
- Dataset of 5 emails (red are spam, green are ham):
 - "I am the prince of UCSD and I demand money."
 - "Tapioca Express: redeem your free Thai Iced Tea!"
 - "DSC 10: free points if you fill out CAPEs!"
 - "Click here to make a tax-free donation to the IRS."
 - "Free career night at Prince Street Community Center."

Smoothing

When smoothing, we add 1 to the count of every group whenever we're estimating a conditional probability.

Modifications and extensions

- Idea: Use pairs (or longer sequences) of words rather than individual words as features.
 - This better captures the dependencies between words.
 - It also leads to a much larger space of features, increasing the complexity of the algorithm.

Modifications and extensions

- Idea: Use pairs (or longer sequences) of words rather than individual words as features.
 - This better captures the dependencies between words.
 - It also leads to a much larger space of features, increasing the complexity of the algorithm.
- Idea: Instead of recording whether each word appears, record how many times each word appears.
 - This better captures the importance of repeated words.

Measuring quality of classification

Taxonomy of machine learning

¹taken from Joseph Gonzalez @ UC Berkeley

1

Classification problems

- In the classification problem, we make predictions based on data (called training data) for which we know the value of the categorical response variable.
- Example classification problems:
 - Deciding whether a patient has kidney disease.
 - Identifying handwritten digits.
- → ▶ Determining whether an avocado is ripe.
 - Predicting whether credit card activity is fraudulent.

Assessing the quality of a classifier

Naive Bayes is one classification algorithm, or classifier, but there are many others.

Is Naive Bayes any good? How do we measure how good of a job a classifier does?

Discussion Question

Think back to regression (supervised learning with a quantitative response variable). How did we measure the quality of our predictions? Can we adopt a similar strategy? Class, F.cation, ho notion of 'close' Simply right or wrong

Unseen data

A natural way to measure the quality of our classifications is to see how often we predict the right category.

10.3390/s21041186.

Accuracy

- Classification accuracy is the proportion of examples in the test set that are correctly classified.
- Accuracy is measured on a 0 to 1 scale.

Accuracy

We can think of accuracy as an estimate for the probability of making a correct classification on an unseen example.

Parameter:

Estimate:

Alagille syndrome is a rare genetic condition that affects 1 in 40,000 people. We want to classify people as having this condition (unhealthy) or not having this condition (healthy).

Discussion Question

Consider a classifier that classifies everyone as **healthy**.

- 1. What is the accuracy of this classifier? 🎒
- 2. What are the ethical repercussions of using this classifier?

- We want to avoid overdiagnosis (telling someone they have the condition when they don't).
- We also want to avoid <u>underdiagnosis</u> (telling someone they're healthy when they're not).
- It's easy to avoid either one of these. It's hard to avoid both of these simultaneously, yet a good classifier should do exactly that.

Different types of errors

Avoid overdiagnosis

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

- How often does our prediction of the condition mean a person actually has the condition?
- Parameter:

P(actually unhealthy|classified as unhealthy)

Estimate:

precision = # people in test set correctly classified as unhealthy # people in test set classified as unhealthy

Avoid underdiagnosis

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

- How often do we identify those that actually have the ► condition?
- Parameter:

P(classified as unhealthy|actually unhealthy)

Estimate: •

recall = # people in test set correctly classified as unhealthy

unhealthy people in test set

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive	False positive
Classified as healthy	False negative	True negative

Precision:

Recall:

 recall =
 # people in test set correctly classified as unhealthy

 # unhealthy people in test set

 =
 true positives

 true positives + false negatives

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive 🛛 🥥	False positive 🔉 ר
Classified as healthy	False negative 🗛	True negative 🛛 🛌

Precision vs. recall

	Actually unhealthy	Actually healthy
Classified as unhealthy	True positive f 🕶	False positive
Classified as healthy	False negative 👩	True negative 💍

Combining precision and recall

- We want high precision and high recall, but it's hard to have both.
- Let's combine them into a single measurement.
- Does the average of precision and recall work well?

$$\frac{P+R}{2}$$

► Compare:
► Classifier A (
$$P = 0, R = 1$$
) → $P + R = 0.5$
► Classifier B ($P = 0.5, R = 0.6$) → $P + R = 0.55$

Combining precision and recall

- Key insight: Two moderate values are better than two extremes. Use the product, which shrinks when either term in the product is small.
- New way of combining precision and recall: F-score

$$\frac{2PR}{P+R}$$
(harmonic
Muan of
P, R)
Classifier A (P = 0, R = 1) $\rightarrow 2 \cdot 0 \cdot 1$
Classifier B (P = 0.5, R = 0.6)
 $2 \cdot 0 \cdot 1$
 $2 \cdot 0 \cdot 1$
 $0 + 1$
 $0 \cdot 1$
 $0 \cdot 5 \cdot 0 \cdot 6 - 6$

► Higher F-score ⇒ better classifier.

Discussion Question

What would be the F-score of a "perfect classifier"?

precision = 1 recall = 1

Summary

Summary

- Accuracy is a simple way of measuring the quality of a classifier, but it can be misleading when classes are imbalanced.
- Precision and recall are two other ways of measuring the quality of a classifier, but they can be hard to achieve simultaneously.
- The F-score combines precision and recall into a single measurement that assesses the quality of a classifier on a 0 to 1 scale.

$$\frac{2PR}{P+R}$$