Instructions

- This is a 50 -minute exam consisting of 6 questions worth a total of 32 points.
- You may use any number of handwritten note sheets, and no other resources.
- No calculators.
- Please write neatly and stay within the provided boxes.
- You may fill out the front page only until you are instructed to start.
- Leave all answers unsimplified in terms of permutations, combinations, factorials, exponents, etc.
- You do not need to show your work or provide justification, unless a problem specifically asks you to.

Statement of Academic Integrity

By submitting your exam, you are attesting to the following statement of academic integrity.
I will act with honesty and integrity during this exam.
Name: \quad Solutions
\square
\square
Lecture Section:A00 (10-10:50AM)B00 (11-11:50AM)

Version - A

Chess Pieces 部
A set of chess pieces has 32 pieces. 16 of these are black, and 16 of these are white. In each color, the 16 pieces are

When there are multiple pieces of a given color and type for example, 8 white pawns), we will assume they are indistinguishable from one another.

1. (3 points) Consider an experiment where each of n people selects one piece from their own se of 32 chess pieces, rintiormly at random. The result of the experiment is a description of time colum all types of the pieces each person selected. for example, if $n=3$, one possible result is:

- Person 1 selected a white knight.
- Person 2 selected a black queen.
- Person 3 selected a black pawn.

How many results are possible for this experiment with n people?
None of the above. (coloritype)
 sequences
2. (5 points) Suppose you randomly select 2 pieces from a set of 32 chess pieces, without replacement.
a) (3 points) You glance at the pieces just long enough to see that both pieces are white. What is the probability that you have 2 pawns?

b) (2 points) True or False: Having two pawns is independent of having two white pieces.True
False
P
direct interpretation
formula for

$$
a \mathfrak{a n}
$$

$$
\frac{\text { pawns } \left.\bigcap_{1}^{a n h} 2 \text { white }\right)}{P(2 w h i t e)}
$$

$$
\begin{aligned}
& \text { usingmult } \\
& \text { yule }
\end{aligned}
$$

$$
=\frac{P(2 \text { whit pawns })}{P(2 \text { white })}=\frac{16}{32} \cdot \frac{15}{3 x}
$$

$$
\left.\begin{array}{l}
\text { using mic } \\
\text { rule } \\
P\left(1^{+} \text {unite and } 2^{m-u}\right. \text { ante }
\end{array}\right)
$$

3. (9 points) In this problem, a lineup is a way of arranging items in a straight line.
a) (3 points) A chess player lines up all 16 white pieces from the set of chess pieces. How many

3 points) A chess player lines up all 16 pawns from the set of chess pieces. How many lineups have white pawns on both ends?

8 black, 8 white
Solution: $C(14 \sqrt{6})=C(14, \sqrt{8})=\frac{14!}{8.6!}$
c) (3 points) A chess player lines up all 16 pawns from the set of chess pieces. Assuming that each different-looking lineup is equally likely, what is the probability that the lineup has two of the same-
$\begin{aligned} & \text { colored pawns on both ends (both black or both white)? } \\ & 0 \frac{1}{4} \\ & 0 \frac{1}{2}\end{aligned} P($ both end 5$)=P\binom{$ both ends }{ whit lite }$+P\binom{$ both ends }{ Lo l ck }
 same

$$
\frac{C(14,6)}{C(16,8)}+\frac{C(14,6)}{C(16,8)}
$$

\underline{W}
middle 14 spots
$P($ last matches first)

$$
=2 \times \underbrace{C(14,6)}_{C(16,8)}
$$

\underline{b}

$$
\begin{gathered}
\text { 4. (6 points) suppose that there are three possible experience levels in chess (beginner, intermediate, } \\
\text { advanced). Only } 10 \% \text { of beginner players beat Avi at a game of chess, while } 50 \% \text { of intermediate players } \\
\text { and } 80 \% \text { of advanced players do } \\
\text { Avi signs up to participate in a certain chess tournament called the Avocado cup. Aside from Avi, } 50 \% \text { of } \\
\text { the tournament proceeds in rounds. In the first round of the tournament, players are randomly paired } \\
\text { up for a game of chess. }
\end{gathered}
$$

5. (3 points) You have a large historical dataset of all competitors in past years of the Avocado Cup chess tournament. Each year, hundreds of chess players compete in the tournament, and one person is crowned the winner. For each competitor in each year of the competition's history, you have information on their

- experience level (beginner, intermediate, advanced),
- birth month (January through December), and
- whether they won the tournament that year (yes or no).

Assume that birthdays of competitors are evenly distributed throughout the months.
You want to predict who will win this year's Avocado Cup. To do so, you use this historical data to train a Naive Bayes classifier and classify each competitor as a winner or non-winner, given their experience level and birth month. Which of the following reasons best explains why your classifier is ineffective in identifying the winner?

Because it uses a variable (birth month) that likely has nothing to do with a person's chances of winning the ournament.

Because it uses a variable (experience level) that likely has a strong connection with a person's chances of winning the tournament.
Because it uses a dataset where there are nany more non-winners than winners.
\bigcirc Because it uses a categorical response variable.

other solutions' - Bayes The

