
Chapter 1

Learning via Optimization

How do we learn from data? An approach commonly used in data science and ma-
chine learning is to turn the problem of learning into amath problem – in particular,
an optimization problem. In this section, we’ll see an example of how this is done
in a simple setting. The basic ideas of this section underlie almost every important
machine learning method, from simple linear regression to deep neural networks.

1.1 Predicting Your Future Salary
How much can you expect to earn as a data scientist? To get an idea, you might
survey working data scientists and ask them about their salary.

Luckily, you don’t have to do much footwork. Each year since 2011, StackOverflow
has surveyed their users, asking them about their pay, experience, education, etc.
In 2018, there were 820 responses from full-time data scientists working in the U.S.
A random selection of five of their salaries is shown below:

90,000
94,000
96,000

120,000
160,000

Given this data, how might you predict your future salary? One way is to compute
the mean of the data by adding up the salaries and dividing by five:

1
5
× (90,000 + 94,000 + 96,000 + 120,000 + 160,000) = 112,000

1

2 CHAPTER 1. LEARNING VIA OPTIMIZATION

Another popular approach is to find the median salary. Recall that to find the me-
dian of a collection of numbers, we sort them and take the number in the middle
(there are two “middle” numbers if the size of the collection is even – both are me-
dians). The median of this data set is 96,000.

We already have two predictions for your future salary: $112,000 (given by the
mean) and $96,000 (given by the median). Which prediction is more likely to be
right? Is there a reason that the mean is higher? And are the mean and median
salaries good ways of predicting your future salary? To answer these questions, we
need to understand how the mean and the median are related to prediction. By the
end of the chapter, we’ll uncover some interesting connections.

1.1.1 Measuring the Error of a Prediction

What makes a prediction good? To get an intuition, let’s plot the six salaries from
the previous section on a number line:

90,000

100,000

110,000

120,000

130,000

140,000

150,000

160,000

h1

h2

Nowconsider twodifferent predictions for your future salary: $150,000, whichwe’ll
call h1, and $115,000, which we’ll call h2. These predictions are also shown on the
number line above. Note that neither h1 nor h2 are the mean or the median of the
data; they are just two arbitrary predictions.

Which is a better prediction of your future salary: h1 or h2? Most people would say
that h2 is better. When pressed to justify their answer, they might argue that h2 is

1.1. PREDICTING YOUR FUTURE SALARY 3

better because it is closer to themiddle of the data points. This is fine reasoning, but
let’s make it more precise; let’s find a way to quantify how good or bad a particular
prediction is using this intuition.

Intuitively, a good prediction is one that is close to your future salary; the closer, the
better. The distance between a prediction and your actual future salary is called the
error, and can be calculated using the formula:

error = |prediction− (actual future salary)| .

We use the absolute value here because a prediction that is one thousand dollars
too high is just as wrong as a prediction that is one thousand dollars too low; they’re
both 1,000 dollars away from the actual salary.

Between h1 and h2, the better prediction is the one which is closer to your future
salary; that is, the onewith the smallest error. But there’s a problem: we don’t know
your actual future salary, so we can’t calculate the error of a prediction. We’re stuck!

To get out of this predicament, we’ll make use of an important assumption:

The future will look like the past.

Is this assumption always correct? No. Anynumber of things could happen: salaries
could rise with inflation, there might be another recession, or the U.S. dollar might
be replaced by bitcoin. But unless something drastic happens, it will not be too
wrong.

If the future does look like the past (or is not too different), then a prediction that
workedwell yesterdaywill continue toworkwell tomorrow. This gives us away out of
our dilemma: to choose between twopredictions, we pick thatwhich has performed
better in the past.

Consider again our data set of six salaries. Suppose that before we collected this
data, we predicted that each of the data scientists surveyed makes h1 = $150,000
per year. We can then calculate just how wrong this prediction was for each of the
observed salaries. For instance, one data scientist actually made 90,000; the error
in estimating their salary was |150,000 − 90,000| = 60,000. Another data scientist
actually made 160,000; for them, the error was |150,000 − 160,000| = 10,000, and so
on. The table below shows the error in using h1 to predict each salary, along with
the total of all of the errors and the average error encountered.

4 CHAPTER 1. LEARNING VIA OPTIMIZATION

salary error of h1 = 150,000

90,000 60,000
94,000 56,000
96,000 54,000

120,000 30,000
160,000 10,000

total error: 210,000
mean error: 42,000

As the table shows, the prediction h1 is on average $42,000 away from the correct
salary. If we were to use h1 to predict your future salary, we would expect it to be
about as wrong.

Now suppose we had used the prediction h2 = $115,000. In some cases, this pre-
diction is worse; for instance, the error in predicting the salary of the data scientist
who actually made 160,000 is 45,000 instead of just 10,000. But in aggregate, h2 is
closer to the data, as the table below demonstrates:

salary error of h2 = 115,000

90,000 25,000
94,000 21,000
96,000 19,000

120,000 5,000
160,000 45,000

total error: 115,000
mean error: 23,000

On average, h2 is $23,000 away from the correct salary. This is much closer than h1,
and so h2 is the better prediction.

We ended the last section by asking whether the mean of the data or the median is
a better prediction of your future salary. We now have a way of comparing the two
quantitatively: we’ll compute the mean error of each and see which is lower. Re-
call that the mean salary is 112,000, while the median is 96,000. A quick calculation
shows that the average error when the mean is used as the prediction is 22,400; this
is lower than the mean error of both h1 and h2! But the mean error of the median is
19,200, which is ever-so-slightly smaller. In this view, the median is the best predic-
tion found so far. But is it the best possible prediction? Is there a prediction which
has even smaller average error?

1.1. PREDICTING YOUR FUTURE SALARY 5

1.1.2 Learning by Minimizing the Mean Error

Let’s take a step back for a moment to remember our goal. We want to make an
accurate prediction of your future salary. In this case, a prediction is simply a num-
ber – in fact, all (non-negative) real numbers are valid predictions. While there are
a lot of possible predictions (infinitely-many, in fact), some are clearly worse than
others. In the last section, we came up with a way of quantifying how bad a partic-
ular prediction is by computing the mean error it incurs on the data. In this view
the best possible prediction is the real number which results in the smallest mean
error.

Let’s make this more precise by introducing some notation. Suppose we have gath-
ered a data set of n salaries; let these be y1, y2, . . . yn. That is, y1 is the salary of the
first person, y2 is the salary of the second, and so on. Suppose h is a prediction of
your future salary. We’ll write R(h) for the mean error of the prediction h on the
data y1, . . . , yn; We can calculate R(h) as follows:

R(h) = (mean error in using h to predict y1, . . . , yn)

=
1
n
[(error in using h to predict y1) + . . . + (error in using h to predict yn)]

=
1
n
(|h − y1|+ |h − y2|+ . . . + |h − yn|)

Writing the summation of a bunch of terms using . . . is sometimes imprecise, and
isn’t very concise. We’ll typically use the equivalent summation notation below:

=
1
n

n

∑
i=1

|h − yi|

You can check that, in reference to the example of the previous section, R(h1) =
R(150,000) = 42,000, whereas R(h2) = R(115,000) = 23,000. Because R(h2) <
R(h1), we consider h2 to be the better prediction. We can think of R as a function
which takes in a prediction and outputs a score telling us how bad the prediction
is; the bigger R(h), the worse h is.

Our goal, again, to is to find the best prediction out of all possible predictions (that
is, all non-negative real numbers). Our approach is to find the prediction h∗ which
results in the smallest possible value of R(h). To put it another way: our goal is to
minimize R over all non-negative real numbers. This is an example of an optimiza-

6 CHAPTER 1. LEARNING VIA OPTIMIZATION

tion problem. We can write the problem more precisely using standard notation:

h∗ = argminh∈R+ R(h)

= argminh∈R+
1
n

n

∑
i=1

|h − yi|

This notation says that the best prediction, h∗, is the argument which minimizes
R(h) over all non-negative real numbers, R+.

1.1.3 Solving the Optimization Problem

Our goal is now precise: find the number h which minimizes the mean error, R(h).
This is an instance of a problem we’ve seen many times before in calculus: finding
the minimum of a function.

Recall the trick for finding a local minimum or maximum of a function: we take the
derivative, set it equal to zero, and solve. In essence, we are finding the placeswhere
the slope of the function is zero; these places must correspond to local minima or
maxima.

Let’s try this approach with the function R. First we must what variable to take the
derivative in. In this case, we are concerned with how changing the prediction, h,
changes the mean error, R, and so we will take the derivative with respect to h. We
have:

dR
dh

=
d

dh

[
1
n

n

∑
i=1

|yi − h|
]

Remember that constants don’t phase derivative operators; we can move the d/dh
right on past the 1/n:

=
1
n

d
dh

n

∑
i=1

|yi − h|

Can we push the derivative inside of the summation symbol? It turns out that we
can. Recall that the derivative of a sum is the sum of the derivatives; that is, d

dx (f +
g) = d f

dx +
dg
dx . Our summation presents the same situation, just with n terms instead

of two:

=
1
n

n

∑
i=1

d
dh

|yi − h|

1.1. PREDICTING YOUR FUTURE SALARY 7

Now we’re stuck. How do we take the derivative of an absolute value function?

Let’s take a closer look at |yi − h|. As a function of h, this is zero when h = yi. When
h is larger than yi, the function looks like h− yi; that is, it looks like a line with slope
1. When h is smaller than yi, the function looks likes yi − h; it is a line with slope -1.
If we were to plot the function, we’d see:

h

|h − yi|

yi

One thing we notice in particular is that the slope of the function is not well-defined
at h = yi. This means that the function is not differentiable. We can’t simply take
the derivative, set to zero, and solve – there is no derivative!

Instead, we’ll plot the function R(h) and see what can be done. Below is the graph
of R(h) computed using the salaries from above as the data.

80
00

0
90

00
0

10
00

00

11
00

00

12
00

00

13
00

00

14
00

00

15
00

00

16
00

00

h

0

10000

20000

30000

40000

R(
h)

The first thing we notice about R(h) is that it is piecewise linear. Indeed, this fol-
lows from the fact that R is the sum of absolute value functions, each of which are

8 CHAPTER 1. LEARNING VIA OPTIMIZATION

piecewise linear. A closer look shows that the points at which the function’s slope
changes are precisely the data points. The lowest value of R(h) appears to coincide
with the third data point, 96,000, which happens to be the median.

Notice that the minimum occurs where the slope goes from negative to positive.
More generally, a minimizer is a point where the slope changes from negative to
non-negative (possibly zero). This definitionworks for differentiable functions, too.
Our goal now is to find a formula for the slope of R at a particular point, h, where
we’ll assume that h is not a data point, since the slope is not defined there.

Recall that R(h) = 1
n ∑n

i=1 |yi − h|. For any given h, we can divide the data points
into those which are smaller than h and those which are larger. Furthermore, we
can split the summation into two summations: one over the points smaller than h,
and one over those larger:

R(h) =
1
n ∑

yi<h
|yi − h|+ 1

n ∑
yi>h

|yi − h|

If yi < h, then |yi − h| = h − yi. Likewise, if yi > h, then |yi − h| = yi − h. Making
these substitutions:

=
1
n ∑

yi<h
(h − yi) +

1
n ∑

yi>h
(yi − h)

The coefficient on h will tell us the slope of the line at h. We see that the coefficient
is increased by 1

n for every data point less than h, and decreased by 1
n for every data

point greater than h. Therefore, we have:

slope at h =
1
n
[(# of points < h)− (# of points > h)] .

The slope will be negative when there are more points to the right of h than to the
left of h. The slope will become non-negative precisely when there are an equal
number of points to the left and right of h. This describes the median!

What we have shown, therefore, is that the mean error is indeed minimized the by
the median. We have now solved the optimization problem posed by the previous
section.

1.1.4 Learning by Minimizing Mean Squared Error

The fact that the median minimizes the mean error makes for a nice story, but we’re
not done yet. Remember that we couldn’t use our favorite tool – calculus – to min-
imize the mean error because it is not differentiable. Instead, we had to do a more

1.1. PREDICTING YOUR FUTURE SALARY 9

careful analysis. Is there a way to change the mean error – perhaps using a different
way of measuring the accuracy of our prediction – so that it becomes differentiable?

Recall that the error of a prediction is given by:

error = |prediction− (actual future salary)| .

The mean error is therefore the sum of a bunch of absolute values:

mean error = 1
n

n

∑
i=1

|h − yi|

Remember that the absolute value presents problems when trying to minimize the
above function because it is not differentiable.

What if we instead used a different way of measuring the accuracy of a prediction,
the squared error:

squared error = |prediction− (actual future salary)|2

= (prediction− (actual future salary))2

Measuring the accuracy like this may not be as natural as using the error itself, but
it works: the squared error is smaller the better the prediction is. Most importantly,
however, it doesn’t include the absolute value. Themean squared error is therefore:

mean squared error = 1
n

n

∑
i=1

(h − yi)
2.

This is differentiable, and we can use calculus to find the minimizer!

To begin, we’ll use Rsq(h) to denote the mean squared error of the prediction h.
That is:

Rsq(h) =
1
n

n

∑
i=1

(h − yi)
2.

Our goal is to find the prediction with the smallest mean squared error. To do so,
we will minimize Rsq by taking a derivative, setting it to zero, and solving for the
best h:

dRsq
dh

=
d

dh

[
1
n

n

∑
i=1

(yi − h)2

]
.

The derivative operator can be pushed inside of the summation:

=
1
n

n

∑
i=1

d
dh

(yi − h)2.

10 CHAPTER 1. LEARNING VIA OPTIMIZATION

A careful application of the chain rule results in:

=
2
n

n

∑
i=1

(h − yi).

To minimize Rsq(h) over all possible h, we set the derivative to zero and solve for h:

dRsq
dh

= 0

=⇒ 2
n

n

∑
i=1

(h − yi) = 0.

Dividing both sides by two:

=⇒ 1
n

n

∑
i=1

(h − yi) = 0.

The summation can be split into two summations:

=⇒ 1
n

n

∑
i=1

h − 1
n

n

∑
i=1

yi = 0,

=⇒ 1
n

n

∑
i=1

h =
1
n

n

∑
i=1

yi.

Since h is a constant, we can pull it out of the first summation:

=⇒ h
n

n

∑
i=1

1 =
1
n

n

∑
i=1

yi,

=⇒ h
n
· n =

1
n

n

∑
i=1

yi.

=⇒ h =
1
n

n

∑
i=1

yi.

This calculation shows that the choice of hypothesis thatminimizes themean squared
error is the mean of the data!

1.2 Loss Functions
We so far have two ways of predicting someone’s future salary given observed
salaries. First, we can find the prediction that minimizes the mean error; this re-
sults in the median of the data. Or we can find the prediction that minimizes the
mean squared error; this gives the mean of the data.

1.2. LOSS FUNCTIONS 11

Which is better? In one sense, themean error ismore natural than themean squared
error. It is also less sensitive to outliers in the data. To see this, consider the follow-
ing salaries:

90,000 94,000 96,000 120,000 160,000

The median is 96,000, and the mean is 112,000. Now suppose the person whomade
160,000 gets a raise and their salary doubles:

90,000 94,000 96,000 120,000 320,000

Themean of this new data set jumps, too, to 144,000, but the median stays at 96,000.
It is arguable that the median remains a better description of a typical salary.

On the other hand, the median is harder to compute than the mean. Imagine how
youwould compute themedian of 1,000 numberswithout a computer. If you’re like
most people, you’d sort the numbers first and then find the one in the middle. But
sorting 1,000 numbers is no easy task. Computing the mean of 1,000 numbers in-
volves adding 1,000 numbers and dividing the result by 1,000. This may be tedious,
but still seems easier than sorting so many numbers.

Of course, computers can sort very quickly, so finding the median is not much
harder for them than finding the mean.1 The larger point, however, is that a small
change in how error is measured resulted in two different answers with very dif-
ferent properties. On one hand, the mean squared error is easy to minimize, but
is sensitive to outliers. On the other, the mean error is robust to outliers, but it is
harder to find its minimizer. As we’ll see, this sort of tradeoff is typical in machine
learning.

While we took different routes to minimizing the mean error and the mean squared
error, the general strategy was the same. First, we settled on a way of measuring
the difference between a prediction and the “right answer”. We then tried to find
the prediction which minimized this difference on average. This general paradigm
is called empirical risk minimization (or ERM) and is at the heart of many of the
machine learning methods that you’ve heard of.

The first step in ERM involves choosing a loss function L(h, y). A loss function
is simply a function that takes in a prediction and a correct answer and outputs a
number quantifying how far h is from y. We have already seen two loss functions,
implicitly: the absolute loss, defined by:

Labs(h, y) = |h − y|

1It turns out that it is possible to find the median without sorting the data. The result is an algo-
rithm for the median which is essentially as efficient as the normal algorithm for the mean.

12 CHAPTER 1. LEARNING VIA OPTIMIZATION

and the square loss, defined by:

Lsq(h, y) = (h − y)2.

Once we’ve picked a loss function, L, and gathered some data, y1, . . . , yn, we can
measure the average loss of a prediction, h, on the data:

1
n

n

∑
i=1

L(h, yi)

If the average loss is small, the prediction is good; if it is large, the prediction is bad.

In machine learning, the average loss on the data goes by the name of empirical
risk. Our goal is therefore to pick a prediction which minimizes the empirical risk;
thus the name, empirical risk minimization.

Suppose we choose our loss function to be the absolute loss, Labs(h, y) = |h − y|.
The empirical risk is then:

Rabs(h, y) =
1
n

n

∑
i=1

Labs(h, yi)

=
1
n

n

∑
i=1

|h − yi|

You’ll recognize this as the mean (absolute) error! And if we use the square loss,
Lsq(h, y) = (h − y)2, the empirical risk is:

Rsq(h, y) =
1
n

n

∑
i=1

Lsq(h, yi)

=
1
n

n

∑
i=1

(h − yi)
2

This is, of course, simply the mean squared error.

1.2.1 Designing Our Own Loss Function

The absolute loss and square loss are fine choices of loss function, but let’s design
our own for fun. In this part, we’ll design a loss function that is very insensitive to
outliers. We’ll then try to minimize the risk (a.k.a, the average loss), but run into
some trouble. In the next section, we’ll invent the method of gradient descent in
order to resolve our difficulties.

One property that we might want from our loss function is an insensitivity to out-
liers. The square loss is sensitive because it grows faster and faster the further h
is from y. What if our loss function takes the opposite approach, and grows very
slowly. For instance, what if our loss function looked like that below:

1.2. LOSS FUNCTIONS 13

This plot shows the right answer, y, as a red ×. The blue line shows what the loss
might look like as h moves away from y. At first, the loss increases, signaling that h
is becoming less and less accurate. At a point, however, the loss stops growing and
essentially levels out. In essence, the loss function penalizes all outliers roughly the
same; it is saying “an outlier is an outlier; whether it is 100 units away or 1,000,000”.

Our loss function looks something like a bell curve that has been inverted and
shifted up so that its minimum value is zero. As such, a function which describes
the shape above is

LUCSD(h, y) = 1 − e−(h−y)2/σ2
,

where σ is a scale parameter, to be discussed in a moment. This loss function isn’t
popular; it doesn’t even have a name (so I’ve called it the UCSD loss). It isn’t in-
credibly useful, either. But we’ll explore its properties, and in doing so we’ll get a
better handle on empirical risk minimization.

As mentioned above, the σ in the definition of LUCSD is a scale parameter. It deter-
mines the point where the function starts to level off. If σ is large, the level-off point
occurs further from y. In essence, σ determines what an outlier is. If we’re working
with salary data, we might set σ to be in the tens of thousands of dollars. If we’re
working with temperatures, on the other hand, we might set σ to be around ten.

Let’s use this loss function to make a prediction for your future salary. We start by
writing down the risk:

RUCSD(h) =
1
n

n

∑
i=1

LUCSD(h, yi)

=
1
n

n

∑
i=1

[
1 − e−(h−yi)

2/σ2
]

Let’s take a step back for a moment to visualize this function. In order to plot
RUCSD(h), we first have to pick a value for the scale parameter, σ. Let’s start with
σ = 3000:

14 CHAPTER 1. LEARNING VIA OPTIMIZATION

60000 70000 80000 90000 100000 110000 120000 130000 140000 150000
h

0.94

0.95

0.96

0.97

0.98

R u
cs

d(
h)

= 3000

We see that the function is somewhat wiggly. This is because RUCSD(h) is the av-
erage of a bunch of loss functions, LUCSD, which look like upside-down bell curves
centered around the data points. The width of each of these curves is controlled by
σ. When σ is small, the width is too, and so the sum is rather jagged.

Now let’s plot the risk when the scale parameter is set to 4, 500.

60000 70000 80000 90000 100000 110000 120000 130000 140000 150000
h

0.92

0.93

0.94

0.95

0.96

0.97

R u
cs

d(
h)

= 4500

We notice that as we increase σ, the function becomes smoother. At σ = 10000 it
still has a few wrinkles:

1.2. LOSS FUNCTIONS 15

60000 70000 80000 90000 100000 110000 120000 130000 140000 150000
h

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

R u
cs

d(
h)

= 10000

But at σ = 21000 it is almost entirely smoothed out.

60000 70000 80000 90000 100000 110000 120000 130000 140000 150000
h

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

R u
cs

d(
h)

= 21000

Our goal is to find the minimizer of this function. It is differentiable, so we’ll try
our familiar strategy of taking a derivative, setting it to zero, and solving. You can
verify that the derivative is:

dRUCSD
dh

(h) =
2

nσ2

n

∑
i=1

(h − yi) · e−(h−yi)
2/σ2

Now we just need to set this to zero and solve for h. We have:

dRUCSD
dh

(h) = 0 =⇒ 2
nσ2

n

∑
i=1

(h − yi) · e−(h−yi)
2/σ2

= 0

Multiplying both sides by 2/(nσ2):

=⇒
n

∑
i=1

(h − yi) · e−(h−yi)
2/σ2

= 0

16 CHAPTER 1. LEARNING VIA OPTIMIZATION

Now we split the summand in an attempt to isolate h on one side of the equation:

=⇒
n

∑
i=1

h · e−(h−yi)
2/σ2 −

n

∑
i=1

yi · e−(h−yi)
2/σ2

= 0

It is here that we get stuck. You can try several things, but you’ll never be able to get
an equationwith just h on one side; the problem is that h appears in the exponential,
and it is hard to remove it.

This is a case where we have a function RUCSD which is differentiable, but whose
derivative is complicated enough that we cannot solve for the place where it is zero.
We’ll need to use a different approach: gradient descent.

1.3 Gradient Descent
In the last section we found a risk function RUCSD which is differentiable, but whose
derivative is complicated enough that we couldn’t directly solve for its minimizer.
In response, we’ll develop a strategy forminimizing risk functions that plays a large
role in modern machine learning: gradient descent.

Recall that the derivative of a function R at a point h tells us the slope of R at that
point. Consider for instance the function plotted in the figure below. The derivative
of this function at the point h0 is negative, while the derivative at h1 is positive.

Suppose we were standing on the blue line at h0 and wearing a blindfold. We
wouldn’t be able to see what the blue line does anywhere else; in particular, we
wouldn’t be able to see where the minimizer is. But we could feel around with our
toe and realize that the line decreases from left to right. That is, the slope is neg-
ative. And with only this information at our disposal, the best choice would be to
move to the right. Likewise, if we were at the point h1, we would be able to tell that
the slope is positive, and that we should move to the left.

1.3. GRADIENT DESCENT 17

This suggests an iterative procedure for finding the minimizer. We start at some
point, h0; perhaps chosen randomly. We then compute the derivative at h. If it
is positive, we walk to the left (decrease h). If it is positive, we walk to the right
(increase h).

How big of a step do we take? If the slope at our current location is close to zero,
we might be close to a local minimum, so we shouldn’t take too large of a step. It
therefore makes sense to take a step of size |dR/dh|; the magnitude of the slope.
More precisely, if we are standing at a point h0, then our next position h1 should be:

h1 = h0 −
dR
dh

(h0)

This is called the update rule. Check that when the slope is negative, this rule will
increase our prediction, h. Likewise, when the slope is positive, this rule will decrease
our prediction.

Once we’ve made our step, we are (hopefully) closer to the minimizer. Naturally,
we repeat the process: compute the slope at our new position and decide on which
direction to move, and how far. The hope is that we’ll eventually get close to a local
minimum. If the function is indeed differentiable, then the slope near the local
minimum is close to zero, and our step sizes will be proportionately small. Our
steps will eventually become so small that we are barely moving; at this point, we
will say that the process has converged to an answer.

The procedure we have just described is gradient descent. More concisely, gradient
descent has the following steps:

• Pick α to be a positive number. It is the learning rate.

• Pick a starting prediction, h0.

• On step i, perform update hi = hi−1 − α · dR
dh

(hi−1)

• Repeat until convergence (when h doesn’t change much).

There is only one thing new here: α. It is a parameter that allows us to tweak how
large our steps are. Choosing α to be large can get us to the minimizer faster, but
choosing it to be too large can cause us to never reach the minimizer at all, as we’ll
soon see.

