
DSC 40A - Homework 2
Due: Tuesday, July 18 at 11:59pm

Write your solutions to the following problems by either typing them up or handwriting them on another
piece of paper. Homeworks are due to Gradescope by 11:59pm on the due date. You can use a slip day to
extend the deadline by 24 hours.

Homework will be evaluated not only on the correctness of your answers, but on your ability to present
your ideas clearly and logically. You should always explain and justify your conclusions, using sound
reasoning. Your goal should be to convince the reader of your assertions. If a question does not require
explanation, it will be explicitly stated.

Homeworks should be written up and turned in by each student individually. You may talk to other
students in the class about the problems and discuss solution strategies, but you should not share any
written communication and you should not check answers with classmates. You can tell someone how to do
a homework problem, but you cannot show them how to do it.

For each problem you submit, you should cite your sources by including a list of names of other students
with whom you discussed the problem. Instructors do not need to be cited.

This homework will be graded out of 50 points. The point value of each problem or sub-problem is indicated
by the number of avocados shown.

Notes:

• This homework involves some long calculations. You may use a calculator (Python is recommended!),
but you may not use any tools that perform regression for you. Show your work by showing the
mathematical expression you’re evaluating with a calculator, and the numerical result; you don’t need
to show every intermediate step.

Problem 1. Averaged Data Points and Their Impact on Regression Lines

Suppose you have a data set of eight data points whose coordinates are

(5, y1), (5, y2), (10, y3), (10, y4), (15, y5), (15, y6), (20, y7), (20, y8).

Define

y1 =
y1 + y2

2
, y2 =

y3 + y4
2

, y3 =
y5 + y6

2
, y4 =

y7 + y8
2

.

Show that the least squares regression line fitted to all eight data points is identical to the least squares
regression line fitted to the four points (5, y1), (10, y2), (15, y3), (20, y4).

Problem 2. Holler for Haaland

Suppose that in 2018 we collected data about 200 randomly sampled professional soccer players to find out
how many goals they scored that year and their corresponding market value, which is the amount of money
they would be sold for if another team wanted them. In the collected survey data, we find that the goals
scored had a mean of 31 and a standard deviation of 6. We then use least squares to fit a linear prediction
rule H(x) = w0 + w1x, which we will use to help other players predict their market value in millions of
dollars (y) based on how many goals they scored (x).

a) Erling Haaland was one of the professional players in our sample. Suppose that in 2018, he
scored 16 goals and his market value was only 20 million, the smallest market value in our sample.
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In 2019, Haaland moved to the Bundesliga, a much more competitive league. In 2019, he again scored
16 goals, but his market value shot up to 80 million!

Suppose we create two linear prediction rules, one using the dataset from 2018 when Haaland had a
market value of 20 million and another using the dataset from 2019 when Haaland had a market value
of 80 million. Assume that all other players scored the same amount of goals and had the same market
value in both datasets. That is, only this one data point is different between these two datasets.

Suppose the optimal slope and intercept fit on the first dataset (2018) are w∗
1 and w∗

0 , respectively,
and the optimal slope and intercept fit on the second dataset (2019) are w′

1 and w′
0, respectively.

What is the difference between the new slope and the old slope? That is, what is w′
1 − w∗

1? The
answer you get should be a number with no variables.

Note: Since we want to predict market value in millions of dollars, use 20 instead of 20,000,000 for
Haaland’s market value in 2018.

Hint: There are many equivalent formulas for the slope of the regression line. We recommend using
this one for this problem:

w1 =

n∑
i=1

(xi − x)yi

n∑
i=1

(xi − x)2
.

b) Let H∗(x) be the linear prediction rule fit on the 2018 dataset (i.e. H∗(x) = w∗
0 + w∗

1x) and
H ′(x) be the linear prediction rule fit on the 2019 dataset (i.e. H ′(x) = w′

0 + w′
1x).

Consider two other players, Lozano and Messi, neither of whom were part of our original sample in
2018. Suppose that in 2022, Lozano had 18 goals and Messi had 25 goals.

Both Lozano and Messi want to try and use one of our linear prediction rules to predict their market
value for next year.

Suppose they both first use H∗(x) to determine their predicted yields as per the first rule (when
Haaland was only worth 20 million). Then, they both then use H ′(x) to determine predicted yields
as per the second rule (when Haaland was worth 80 million).

Whose prediction changed more by switching from H∗(x) to H ′(x) – Lozano’s or Messi’s?

Hint: You should draw a picture of both prediction rules, H∗(x) and H ′(x). You already know how
the slope of these lines differs from part (b). Can you identify a point that each line must go through?

c) In this problem, we’ll consider how our answer to part (b) might have been different if Haaland
had more goals in both 2018 and 2019.

• Suppose Haaland instead had 31 goals in both 2018 and 2019. If his market value increased from
2018 to 2019, and everyone else’s data stayed the same, which slope would be larger: H∗(x) or
H ′(x)?

• Suppose Haaland instead had 45 goals in both 2018 and 2019. If his market value increased from
2018 to 2019, and everyone else’s data stayed the same, which slope would be larger: H∗(x) or
H ′(x)?

You don’t have to actually calculate the new slopes, but given the information in the problem and
the work you’ve already done, you should be able to answer the question and give brief justification.

2



Problem 3. Professional Wrestling

a) In professional wrestling, wrestlers build broad and diverse move sets in order to increase
fan interest and accordingly, their merchandise sales. Tony Khan, a wrestling promoter, asked one of
his assistants to log wrestlers’ distinct move sets for a given year and generate a lookup of wrestlers,
the count of their distinct moves x, and their merchandise sales y in thousands of dollars.

Wrestler distinct moves (x) merchandise sales (y)
Leyla Hirsch 33 200
Adam “Hangman” Page 20 190
Dr. Britt Baker, D.M.D. 32 260
Kenny Omega 50 320
Satnam Singh 5 110

What linear relationship y = c0 + c1x best describes merchandise sales as a function of the number of
distinct moves a wrestler has? Give exact values for c0 and c1 (do not round).

b) Now, let’s interpret the meaning of the linear function y = c0+ c1x that you found in part (a).
What does c1 represent in terms of merchandise sales?

c) What is the mean squared error, MSEx, for this data set, using the line you found in part
(a)? Round your final answer to three decimal places.

d) Khan knows that Danny Cage, head instructor at the Monster Factory wrestling school, is
one of the best trainers in the business. So he decides to quantify the value of training with Danny
Cage (in years) for a given wrestler’s merchandise sales. Wrestling school teaches not only distinct
moves, but also other skill sets like developing a character, microphone skills, etc. For each of the five
wrestlers noted, Khan recorded the number of years a wrestler has trained with Danny Cage, z, and
the corresponding merchandise sales, y (in thousands of dollars).

Wrestler years with Danny Cage (z) merchandise sales (y)
Leyla Hirsch 12.3 200
Adam “Hangman” Page 8 190
Dr. Britt Baker, D.M.D. 12 260
Kenny Omega 18 320
Satnam Singh 3 110

What linear relationship y = d0 + d1z best describes merchandise sales as a function of the years
training with Danny Cage? Give exact values for d0 and d1 (do not round).

e) What is the mean squared error, MSEz, for this data set, using the line you found in part (d)?
Round your final answer to three decimal places.

Problem 4. Vector Calculus Involving Matrices

Let X be a fixed matrix of dimension m × n, and let w⃗ ∈ Rn. In this problem, you will show that the
gradient of w⃗TXTXw⃗ with respect to w⃗ is given by

d

dw⃗
(w⃗TXTXw⃗) = 2XTXw⃗.

Let r⃗1, r⃗2, . . . , r⃗m be the column vectors in Rn that come from transposing the rows of X. For example, if

X =

[
1 4 7
2 3 1

]
, then r⃗1 =

14
7

 and r⃗2 =

23
1

.
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a) Show that, for arbitrary X and w⃗, we can write

w⃗TXTXw⃗ =

m∑
i=1

(r⃗Ti w⃗)
2.

Hint: First, show that we can write w⃗TXTXw⃗ as a dot product of two vectors. Then, try and re-write
those vectors in terms of r⃗1, r⃗2, ..., r⃗m and w⃗.

Now that we have written

w⃗TXTXw⃗ =

m∑
i=1

(r⃗Ti w⃗)
2

we can apply the chain rule, along with the result of part (a) above, to conclude that

d

dw⃗
(w⃗TXTXw⃗) =

m∑
i=1

2(r⃗Ti w⃗)
d

dw⃗
(r⃗Ti w⃗)

=

m∑
i=1

2(r⃗Ti w⃗)r⃗i

b) Next, show that, for arbitrary X and w⃗, we can write

2XTXw⃗ =

m∑
i=1

2(r⃗Ti w⃗)r⃗i

Hint 1: Use the column-mixing interpretation of matrix-vector multiplication from Module 10.

Hint 2: It is likely that you’ll need to use one of your intermediate results from part (a).

Since you’ve shown that d
dw⃗ (w⃗TXTXw⃗) and 2XTXw⃗ are both equal to the same expression,

m∑
i=1

2(r⃗Ti w⃗)r⃗i,

you have proven that they are equal to one another, i.e. that

d

dw⃗
(w⃗TXTXw⃗) = 2XTXw⃗

as desired.

Problem 5. Sums of Residuals

Let’s start by recalling the idea of orthogonality from linear algebra. This will allow us to prove a powerful
result regarding linear regression.

Two vectors are orthogonal if their dot product is 0, i.e. for a⃗, b⃗ ∈ Rn:

a⃗T b⃗ = 0 =⇒ a⃗, b⃗ are orthogonal

Orthogonality is a generalization of perpendicularity to multiple dimensions. (Two orthogonal vectors in 2D
meet at a right angle.)

Suppose we want to represent the fact that some vector b⃗ is orthogonal to many vectors a⃗1, a⃗2, ..., a⃗d all at
once. It turns out that we can do this by creating a new n× d matrix A whose columns are the vectors a⃗1,
a⃗2, ..., a⃗d, and writing AT b⃗ = 0.

For instance, suppose a⃗1 =

 8
4
−2

, a⃗2 =

35
1

, and b⃗ =

 1
−1
2

. Then,
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A =

 8 3
4 5
−2 1

 =⇒ AT =

[
8 4 −2
3 5 1

]

Note that the product AT b⃗ involves taking the dot product of each row in AT with b⃗.

AT b⃗ =

[
8 4 −2
3 5 1

] 1
−1
2

 =

[
8(1) + 4(−1) + (−2)(2)
3(1) + 5(−1) + 2(1)

]
=

[
0
0

]

Since AT b⃗ = 0⃗, then it is the case that b⃗ is orthogonal to each row of AT , and hence orthogonal to each
column of A.

(We will not use this fact in this class, but if AT b⃗ = 0, it also means that b⃗ is orthogonal to the column
space of A, which is the space of all linear combinations of the columns of A. As a good exercise in linear
algebra, see if you can prove this result!)

a) Suppose 1⃗ is a vector in Rn containing the value 1 for each element, i.e. 1⃗ =


1
1
...
1

.

For any other vector b⃗ =


b1
b2
...
bn

, what is the value of 1⃗T b⃗, i.e. what is the dot product of 1⃗ and b⃗?

b) Now, consider the typical multiple regression scenario where our prediction rule has an
intercept term (w0):

H(x⃗) = w0 + w1x
(1) + w2x

(2) + ...+ wdx
(d).

For this scenario, X is a n× (d+1) design matrix, y⃗ ∈ Rn is an observation vector, and w⃗ ∈ R(d+1) is
the parameter vector. We’ll use w⃗∗ to denote the optimal parameter vector, or the one that satisfies
the normal equations.

Show that the error vector, e⃗ = y⃗ −Xw⃗∗, is orthogonal to the columns of X.

Hint: Use the normal equations and the definition of orthogonality to the columns of a matrix given
in the problem description.

c) We define the ith residual to be the difference between the actual and predicted values
for individual i in our data set. In other words, the ith residual ei is

ei = (y⃗ −Xw⃗∗)i

Here, (y⃗ − Xw⃗∗)i is referring to element i of the vector y⃗ − Xw⃗∗. We use the letter e for residuals
because residuals are also known as errors.

Using what you learned in parts (a) and (b), show that for multiple linear regression with an intercept
term, the sum of the residuals is zero, that is

n∑
i=1

ei = 0.
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