# Module 10 – Regression via Linear Algebra



**DSC 40A, Summer 2023** 

#### **Agenda**

- Finish linear algebra review.
- Formulate mean squared error in terms of linear algebra.
- Minimize mean squared error using linear algebra.



#### **Vectors**

- An vector in  $\mathbb{R}^n$  is an  $n \times 1$  matrix.
- We use lower-case letters for vectors.

$$\vec{V} = \begin{bmatrix} 2 \\ 1 \\ 5 \\ -3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

#### **Geometric meaning of vectors**

A vector  $\vec{v} = (v_1, ..., v_n)^T$  is an arrow to the point  $(v_1, ..., v_n)$  from the origin.

► The **length**, or **norm**, of  $\vec{v}$  is  $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$ .

#### **Dot products**

The **dot product** of two vectors  $\vec{u}$  and  $\vec{v}$  in  $\mathbb{R}^n$  is denoted by:

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v}$$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a scalar!

## **Properties of the dot product**

Commutative:

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u} = \vec{u}^T \vec{v} = \vec{v}^T \vec{u}$$

Distributive:

$$\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$$

## **Matrix-vector multiplication**

- Special case of matrix-matrix multiplication.
- The result is always a vector with the same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

Another view: a dot product with the rows.

#### **Discussion Question**

If A is an  $m \times n$  matrix and  $\vec{v}$  is a vector in  $\mathbb{R}^n$ , what are the dimensions of the product  $\vec{v}^T A^T A \vec{v}$ ?

a)  $m \times n$  (matrix)

- b)  $n \times 1$  (vector)
- c)  $1 \times 1$  (scalar)
- d) The product is undefined.

#### **Matrices and functions**

- Suppose A is an  $m \times n$  matrix and  $\vec{x}$  is a vector in  $\mathbb{R}^n$ .
- Then, the function  $f(\vec{x}) = Ax$  is a linear function that maps elements in  $\mathbb{R}^n$  to elements in  $\mathbb{R}^m$ .
  - ▶ The input to *f* is a vector, and so is the output.
- Key idea: matrix-vector multiplication can be thought of as applying a linear function to a vector.

# Mean squared error, revisited

## Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
  - If the intermediate steps get confusing, think back to this overarching goal.
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
  - use multiple features.
  - ▶ are non-linear.
- Let's start by expressing R<sub>sq</sub> in terms of matrices and vectors.

## Regression and linear algebra

We chose the parameters for our prediction rule

$$H(x) = W_0 + W_1 x$$

by finding the  $w_0^*$  and  $w_1^*$  that minimized mean squared error:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2.$$

▶ This is *kind of* like the formula for the length of a vector:

$$\|\vec{\mathbf{v}}\| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + \dots + \mathbf{v}_n^2}$$

## Regression and linear algebra

Let's define a few new terms:

- ► The observation vector is the vector  $\vec{y} \in \mathbb{R}^n$  with components  $y_i$ . This is the vector of observed/"actual" values.
- ► The **hypothesis vector** is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- The error vector is the vector  $\vec{e} \in \mathbb{R}^n$  with components  $e_i = y_i H(x_i)$ . This is the vector of (signed) errors.

## **Example**

Consider 
$$H(x) = \frac{1}{2}x + 2$$
.

$$\vec{e} = \vec{y} - \vec{h} =$$

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 =$$

## Regression and linear algebra

- The observation vector is the vector  $\vec{y} \in \mathbb{R}^n$  with components  $y_i$ . This is the vector of observed/"actual" values.
- The **hypothesis vector** is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- The error vector is the vector  $\vec{e} \in \mathbb{R}^n$  with components  $e_i = y_i H(x_i)$ . This is the vector of (signed) errors.
- We can rewrite the mean squared error as:

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} ||\vec{e}||^2 = \frac{1}{n} ||\vec{y} - \vec{h}||^2.$$

## The hypothesis vector

- ► The hypothesis vector is the vector  $\vec{h} \in \mathbb{R}^n$  with components  $H(x_i)$ . This is the vector of predicted values.
- For the linear prediction rule  $H(x) = w_0 + w_1 x$ , the hypothesis vector  $\vec{h}$  can be written

$$\vec{h} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_n) \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix} =$$

#### Rewriting the mean squared error

▶ Define the **design matrix** X to be the  $n \times 2$  matrix

$$X = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}.$$

- ▶ Define the **parameter vector**  $\vec{w} \in \mathbb{R}^2$  to be  $\vec{w} = \begin{bmatrix} w_0 \\ w_1 \end{bmatrix}$ .
- Then  $\vec{h} = X\vec{w}$ , so the mean squared error becomes:

$$R_{sq}(H) = \frac{1}{n} ||\vec{y} - \vec{h}||^2$$

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

#### Mean squared error, reformulated

▶ Before, we found the values of  $w_0$  and  $w_1$  that minimized

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

The results:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

**Now**, our goal is to find the vector  $\vec{w}$  that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

**Both versions of**  $R_{sq}$  are equivalent. The results will also be equivalent.

## Spoiler alert...

 $\triangleright$  Goal: find the vector  $\vec{w}$  that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

► Spoiler alert: the answer<sup>1</sup> is

$$\vec{w^*} = (X^T X)^{-1} X^T \vec{y}$$

- Let's look at this formula in action in a notebook. Follow along here.
- ► Then we'll prove it ourselves by hand.

<sup>&</sup>lt;sup>1</sup>assuming  $X^TX$  is invertible