Module 10 - Regression via Linear Algebra

DSC 40A, Summer 2023

Agenda

- Finish linear algebra review.
- Formulate mean squared error in terms of linear algebra.
- Minimize mean squared error using linear algebra.

Linear algebra review

Vectors

- An vector in \mathbb{R}^{n} is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$
\vec{v}=\left[\begin{array}{c}
2 \\
1 \\
5 \\
-3
\end{array}\right]
$$

- Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

\Rightarrow A vector $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)^{T}$ is an arrow to the point $\left(v_{1}, \ldots, v_{n}\right)$ from the origin.

The length, or norm, of \vec{v} is $\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}$.

Dot products

- The dot product of two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is denoted by:

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}
$$

- Definition:

$$
\vec{u} \cdot \vec{v}=\sum_{i=1}^{n} u_{i} v_{i}=u_{1} v_{1}+u_{2} v_{2}+\ldots+u_{n} v_{n}
$$

The result is a scalar!

Properties of the dot product

- Commutative:

$$
\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{T} \vec{u}
$$

- Distributive:

$$
\vec{u} \cdot(\vec{v}+\vec{w})=\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{w}
$$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- The result is always a vector with the same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=a_{1}\left[\begin{array}{l}
1 \\
3
\end{array}\right]+a_{2}\left[\begin{array}{l}
2 \\
4
\end{array}\right]+a_{3}\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

- Another view: a dot product with the rows.

Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^{n}, what are the dimensions of the product $\vec{v}^{T} A^{T} A \vec{v}$?
a) $m \times n$ (matrix)
b) $n \times 1$ (vector)
c) 1×1 (scalar)
d) The product is undefined.

Matrices and functions

\Rightarrow Suppose A is an $m \times n$ matrix and \vec{x} is a vector in \mathbb{R}^{n}.

- Then, the function $f(\vec{x})=A x$ is a linear function that maps elements in \mathbb{R}^{n} to elements in \mathbb{R}^{m}.
\Rightarrow The input to f is a vector, and so is the output.
- Key idea: matrix-vector multiplication can be thought of as applying a linear function to a vector.

Mean squared error, revisited

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
- If the intermediate steps get confusing, think back to this overarching goal.
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that
- use multiple features.
- are non-linear.
\Rightarrow Let's start by expressing $R_{\text {sq }}$ in terms of matrices and vectors.

Regression and linear algebra

- We chose the parameters for our prediction rule

$$
H(x)=w_{0}+w_{1} x
$$

by finding the w_{0}^{*} and w_{1}^{*} that minimized mean squared error:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2} .
$$

- This is kind of like the formula for the length of a vector:

$$
\|\vec{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+\ldots+v_{n}^{2}}
$$

Regression and linear algebra

Let's define a few new terms:
\Rightarrow The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$ with components y_{i}. This is the vector of observed/"actual" values.
\Rightarrow The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
\Rightarrow The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components $e_{i}=y_{i}-H\left(x_{i}\right)$. This is the vector of (signed) errors.

Example

Consider $H(x)=\frac{1}{2} x+2 . \quad \vec{y}=$

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=
$$

Regression and linear algebra

\Rightarrow The observation vector is the vector $\vec{y} \in \mathbb{R}^{n}$ with components y_{i}. This is the vector of observed/"actual" values.

- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
\Rightarrow The error vector is the vector $\vec{e} \in \mathbb{R}^{n}$ with components $e_{i}=y_{i}-H\left(x_{i}\right)$. This is the vector of (signed) errors.
- We can rewrite the mean squared error as:

$$
R_{\mathrm{sq}}(H)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-H\left(x_{i}\right)\right)^{2}=\frac{1}{n}\|\vec{e}\|^{2}=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2} .
$$

The hypothesis vector

- The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^{n}$ with components $H\left(x_{i}\right)$. This is the vector of predicted values.
- For the linear prediction rule $H(x)=w_{0}+w_{1} x$, the hypothesis vector \vec{h} can be written

$$
\vec{h}=\left[\begin{array}{c}
H\left(x_{1}\right) \\
H\left(x_{2}\right) \\
\vdots \\
H\left(x_{n}\right)
\end{array}\right]=\left[\begin{array}{c}
w_{0}+w_{1} x_{1} \\
w_{0}+w_{1} x_{2} \\
\vdots \\
w_{0}+w_{1} x_{n}
\end{array}\right]=
$$

Rewriting the mean squared error

\Rightarrow Define the design matrix X to be the $n \times 2$ matrix

$$
X=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]
$$

- Define the parameter vector $\vec{w} \in \mathbb{R}^{2}$ to be $\vec{w}=\left[\begin{array}{l}w_{0} \\ w_{1}\end{array}\right]$.
- Then $\vec{h}=X \vec{w}$, so the mean squared error becomes:

$$
\begin{aligned}
& R_{\mathrm{sq}}(H)=\frac{1}{n}\|\vec{y}-\vec{h}\|^{2} \\
& R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
\end{aligned}
$$

Mean squared error, reformulated

- Before, we found the values of w_{0} and w_{1} that minimized

$$
R_{s q}\left(w_{0}, w_{1}\right)=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right)^{2}
$$

- The results:

$$
w_{1}^{*}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}=r \frac{\sigma_{y}}{\sigma_{x}} \quad w_{0}^{*}=\bar{y}-w_{1}^{*} \bar{x}
$$

- Now, our goal is to find the vector \vec{w} that minimizes

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

\Rightarrow Both versions of $R_{s q}$ are equivalent. The results will also be equivalent.

Spoiler alert...

- Goal: find the vector \vec{w} that minimizes

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Spoiler alert: the answer ${ }^{1}$ is

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- Let's look at this formula in action in a notebook. Follow along here.
- Then we'll prove it ourselves by hand.

