Module 10 - Regression via Linear Algebra

DSC 40A, Summer 2023

Agenda

- ▶ Finish linear algebra review.
- Formulate mean squared error in terms of linear algebra.
- Minimize mean squared error using linear algebra.

Linear algebra review

Vectors

- An vector in \mathbb{R}^n is an $n \times 1$ matrix.
- We use lower-case letters for vectors.

$$\vec{v} = \begin{bmatrix} 2\\1\\5\\-3 \end{bmatrix}$$

Vector addition and scalar multiplication occur elementwise.

Geometric meaning of vectors

A vector $\vec{v} = (v_1, ..., v_n)^T$ is an arrow to the point $(v_1, ..., v_n)$ from the origin.

► The length, or norm, of \vec{v} is $\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + ... + v_n^2}$.

Dot products

▶ The **dot product** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is denoted by:

 $\vec{u}\cdot\vec{v}=\vec{u}^T\vec{v}$

Definition:

$$\vec{u} \cdot \vec{v} = \sum_{i=1}^{n} u_i v_i = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

The result is a scalar!

Properties of the dot product

Commutative:

$$\vec{u}\cdot\vec{v}=\vec{v}\cdot\vec{u}=\vec{u}^T\vec{v}=\vec{v}^T\vec{u}$$

Distributive:

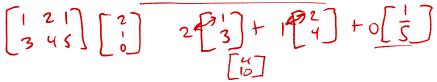
 $\vec{u}\cdot(\vec{v}+\vec{w})=\vec{u}\cdot\vec{v}+\vec{u}\cdot\vec{w}$

Matrix-vector multiplication

- Special case of matrix-matrix multiplication.
- The result is always a vector with the same number of rows as the matrix.
- One view: a "mixture" of the columns.

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} = a_1 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + a_2 \begin{bmatrix} 2 \\ 4 \end{bmatrix} + a_3 \begin{bmatrix} 1 \\ 5 \end{bmatrix}$$

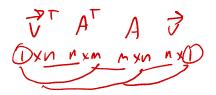
Another view: a dot product with the rows.



Discussion Question

If A is an $m \times n$ matrix and \vec{v} is a vector in \mathbb{R}^n , what are the dimensions of the product $\vec{v}^T A^T A \vec{v}$?

- a) $m \times n$ (matrix)
- b) $n \times 1$ (vector)
- c) 1 × 1 (scalar)
- d) The product is undefined.



Matrices and functions

- Suppose A is an $m \times n$ matrix and \vec{x} is a vector in \mathbb{R}^n .
- ▶ Then, the function $f(\vec{x}) = Ax$ is a linear function that maps elements in \mathbb{R}^n to elements in \mathbb{R}^m .
 - The input to f is a vector, and so is the output.
- Key idea: matrix-vector multiplication can be thought of as applying a linear function to a vector.

$$f(x) = \frac{3x-5}{5}$$

Mean squared error, revisited

Wait... why do we need linear algebra?

- Soon, we'll want to make predictions using more than one feature (e.g. predicting salary using years of experience and GPA).
 - If the intermediate steps get confusing, think back to this overarching goal.
- Thinking about linear regression in terms of linear algebra will allow us to find prediction rules that

use multiple features.

⊳

Let's start by expressing R_{sq} in terms of matrices and vectors.

Regression and linear algebra

We chose the parameters for our prediction rule

 $H(x) = w_0 + w_1 x$ by finding the w_0^* and w_1^* that minimized mean squared error: $R_{sq}(H) = \frac{1}{n} \sum_{i=1}^n (y_i - H(x_i))^2.$

This is kind of like the formula for the length of a vector:

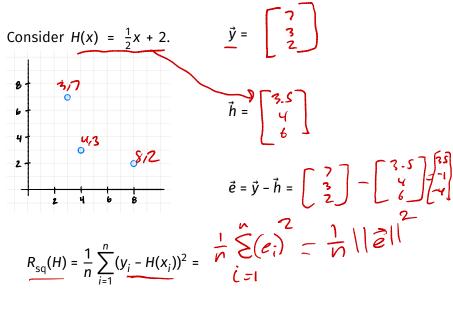
$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$$

Regression and linear algebra

Let's define a few new terms:

- ► The observation vector is the vector $\vec{y} \in \mathbb{R}^n$ with components y_i . This is the vector of observed/"actual" values.
- ► The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- ► The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components $e_i = y_i H(x_i)$. This is the vector of (signed) errors.

Example



Regression and linear algebra

- ► The observation vector is the vector $\vec{y} \in \mathbb{R}^n$ with components y_i . This is the vector of observed/"actual" values.
- ► The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- ► The error vector is the vector $\vec{e} \in \mathbb{R}^n$ with components $e_i = y_i H(x_i)$. This is the vector of (signed) errors.
- We can rewrite the mean squared error as: $R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} (y_i - H(x_i))^2 = \frac{1}{n} ||\vec{e}||^2 = \frac{1}{n} ||\vec{y} - \vec{h}||^2.$

The hypothesis vector

- ► The hypothesis vector is the vector $\vec{h} \in \mathbb{R}^n$ with components $H(x_i)$. This is the vector of predicted values.
- For the linear prediction rule $H(x) = w_0 + w_1 x$, the hypothesis vector \vec{h} can be written

$$\vec{h} = \begin{bmatrix} H(x_1) \\ H(x_2) \\ \vdots \\ H(x_n) \end{bmatrix} = \begin{bmatrix} w_0 + w_1 x_1 \\ w_0 + w_1 x_2 \\ \vdots \\ w_0 + w_1 x_n \end{bmatrix} = \begin{bmatrix} v & v \\ \vdots & v \\ \vdots & \vdots \\ v & v \end{bmatrix}$$



▶ Then $\vec{h} = X\vec{w}$, so the mean squared error becomes:

$$R_{sq}(H) = \frac{1}{n} ||\vec{y} - \vec{h}||^{2}$$
$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - \vec{X}\vec{w}||^{2}$$

Mean squared error, reformulated

▶ Before, we found the values of w_0 and w_1 that minimized

$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$The results: Closed form Solution
$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = r \frac{\sigma_{y}}{\sigma_{x}} \qquad w_{0}^{*} = \bar{y} - w_{1}^{*} \bar{x}$$$$

Now, our goal is to find the vector w that minimizes

$$\frac{R_{sq}(\vec{w})}{n} = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

Both versions of R_{sq} are equivalent. The results will also be equivalent.

Spoiler alert...

► Goal: find the vector ŵ that minimizes

$$R_{sq}(\vec{w}) = \frac{1}{n} ||\vec{y} - X\vec{w}||^2$$

▶ Spoiler alert: the answe

$$\vec{w^*} = (X^T X)^{-1} X^T \vec{y}$$

Let's look at this formula in action in a notebook. Follow along here.

► Then we'll prove it ourselves by hand.

 $[\]Phi_{assuming X^T X}$ is invertible