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Agenda

▶ Recap of Module 10.

▶ Minimizing mean squared error.

▶ Incorporating multiple features.



Recap of Module 10



Reframing regression using linear algebra
▶ Last time, we used linear algebra to reformulate our
problem of fitting a linear prediction rule

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥

▶ We defined a design matrix 𝑋 , parameter vector �⃗�, and
observation vector ⃗𝑦 as follows:

𝑋 = [
1 𝑥1
1 𝑥2
... ...
1 𝑥𝑛

] , �⃗� = [𝑤0𝑤1
] , ⃗𝑦 = [

𝑦1
𝑦2
...
𝑦𝑛

]

▶ Then we rewrote our prediction rule as a matrix-vector
multiplication, defining the hypothesis vector ℎ⃗ as

ℎ⃗ = 𝑋�⃗�



Minimizing mean squared error

▶ With our new linear algebra formulation of regression,
our mean squared error now looks like:

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ Today, we will minimize this function using calculus.
▶ We already saw a sneak peek of the result. The optimal
parameter vector �⃗�∗ is1

⃗𝑤∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ This gives the same 𝑤∗0 and 𝑤∗1 as our formulas from
Module 6.

1assuming 𝑋𝑇𝑋 is invertible



Minimizing mean squared error, again



Some key linear algebra facts
If 𝐴 and 𝐵 are matrices, and �⃗�, ⃗𝑣, �⃗�, ⃗𝑧 are vectors:

▶ (𝐴 + 𝐵)𝑇 = 𝐴𝑇 + 𝐵𝑇

▶ (𝐴𝐵)𝑇 = 𝐵𝑇𝐴𝑇

▶ �⃗� ⋅ ⃗𝑣 = ⃗𝑣 ⋅ �⃗� = �⃗�𝑇 ⃗𝑣 = ⃗𝑣𝑇 �⃗�

▶ ‖�⃗�‖2 = �⃗� ⋅ �⃗�

▶ (�⃗� + ⃗𝑣) ⋅ (�⃗� + ⃗𝑧) = �⃗� ⋅ �⃗� + �⃗� ⋅ ⃗𝑧 + ⃗𝑣 ⋅ �⃗� + ⃗𝑣 ⋅ ⃗𝑧



Goal
▶ We want to minimize the mean squared error:

𝑅sq(�⃗�) =
1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

▶ Strategy: Calculus.

▶ Problem: This is a function of a vector. What does it even
mean to take the derivative of 𝑅sq(�⃗�) with respect to a
vector �⃗�?



A function of a vector
▶ Solution: A function of a vector is really just a function of
multiple variables, which are the components of the
vector. In other words,

𝑅sq(�⃗�) = 𝑅sq(𝑤0, 𝑤1, … , 𝑤𝑑)

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector �⃗�.2

▶ We know how to deal with derivatives of multivariable
functions: the gradient!

2In our case, �⃗� has just two components, 𝑤0 and 𝑤1. We’ll be more
general since we eventually want to use prediction rules with even more
parameters.



The gradient with respect to a vector

▶ The gradient of 𝑅sq(�⃗�) with respect to �⃗� is the vector of
partial derivatives:

∇�⃗�𝑅sq(�⃗�) =
𝑑𝑅sq
𝑑�⃗� =

⎡⎢⎢⎢⎢⎢⎢

⎣

𝜕𝑅sq
𝜕𝑤0
𝜕𝑅sq
𝜕𝑤1

..

.

𝜕𝑅sq
𝜕𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

where 𝑤0, 𝑤1, … , 𝑤𝑑 are the entries of the vector �⃗�.



Example gradient calculation
Example: Suppose 𝑓( ⃗𝑥) = �⃗� ⋅ ⃗𝑥, where �⃗� and ⃗𝑥 are vectors in ℝ𝑛.
What is 𝑑

𝑑 ⃗𝑥𝑓( ⃗𝑥)?



Goal
▶ We want to minimize the mean squared error:

𝑅sq(�⃗�) =
1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

▶ Strategy:
1. Compute the gradient of 𝑅sq(�⃗�).
2. Set it to zero and solve for �⃗�.

▶ The result is called �⃗�∗.

▶ Let’s start by rewriting the mean squared error in a way
that will make it easier to compute its gradient.



Rewriting mean squared error
𝑅sq(�⃗�) =

1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2

Discussion Question

Which of the following is equivalent to 𝑅sq(�⃗�) ?

a) 1
𝑛 ( ⃗𝑦 − 𝑋�⃗�) ⋅ (𝑋�⃗� − ⃗𝑦)

b) 1
𝑛√( ⃗𝑦 − 𝑋�⃗�) ⋅ ( ⃗𝑦 − 𝑋�⃗�)

c) 1
𝑛 ( ⃗𝑦 − 𝑋�⃗�)

𝑇 ( ⃗𝑦 − 𝑋�⃗�)
d) 1

𝑛 ( ⃗𝑦 − 𝑋�⃗�)( ⃗𝑦 − 𝑋�⃗�)
𝑇



Rewriting mean squared error
𝑅sq(�⃗�) =

1
𝑛‖ ⃗𝑦 − 𝑋�⃗�‖2



Rewriting mean squared error
𝑅sq(�⃗�) =



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]

▶ 𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) = 0.
▶ Why? ⃗𝑦 is a constant with respect to �⃗�.



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]

▶ 𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) = 0.
▶ Why? ⃗𝑦 is a constant with respect to �⃗�.

▶ 𝑑
𝑑�⃗� (2⃗𝑋

𝑇 ⃗𝑦 ⋅ �⃗�) = 2𝑋𝑇𝑦.
▶ Why? We already showed 𝑑

𝑑 ⃗𝑥 �⃗� ⋅ ⃗𝑥 = �⃗�.



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]

▶ 𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) = 0.
▶ Why? ⃗𝑦 is a constant with respect to �⃗�.

▶ 𝑑
𝑑�⃗� (2⃗𝑋

𝑇 ⃗𝑦 ⋅ �⃗�) = 2𝑋𝑇𝑦.
▶ Why? We already showed 𝑑

𝑑 ⃗𝑥 �⃗� ⋅ ⃗𝑥 = �⃗�.

▶ 𝑑
𝑑�⃗� (�⃗�

𝑇𝑋𝑇𝑋�⃗�) = 2𝑋𝑇𝑋�⃗�.
▶ Why? See Homework 2.



Compute the gradient

𝑑𝑅sq
𝑑�⃗� = 𝑑

𝑑�⃗� (1𝑛 [ ⃗𝑦 ⋅ ⃗𝑦 − 2𝑋
𝑇 ⃗𝑦 ⋅ �⃗� + �⃗�𝑇𝑋𝑇𝑋�⃗�])

= 1𝑛 [
𝑑
𝑑�⃗� ( ⃗𝑦 ⋅ ⃗𝑦) − 𝑑

𝑑�⃗� (2𝑋𝑇 ⃗𝑦 ⋅ �⃗�) + 𝑑
𝑑�⃗� (�⃗�𝑇𝑋𝑇𝑋�⃗�)]



The normal equations
▶ To minimize 𝑅sq(�⃗�), set gradient to zero and solve for �⃗�:

−2𝑋𝑇 ⃗𝑦 + 2𝑋𝑇𝑋�⃗� = 0
⟹ 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦

▶ This is a system of equations in matrix form, called the
normal equations.

▶ If 𝑋𝑇𝑋 is invertible, the solution is

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ This is equivalent to the formulas for 𝑤∗0 and 𝑤∗1 we saw
before!
▶ Benefit – this can be easily extended to more
complex prediction rules.



Incorporating multiple features



Incorporating multiple features

▶ How do we predict salary given multiple features?

▶ We believe salary is a function of experience and GPA.

▶ In other words, we believe there is a function 𝐻 so that:

salary ≈ 𝐻(years of experience,GPA)

▶ Recall: 𝐻 is a prediction rule.

▶ Our goal: find a good prediction rule, 𝐻.



Example prediction rules

𝐻1(experience,GPA) = $2, 000 × (experience) + $40,000 ×
GPA
4.0

𝐻2(experience,GPA) = $60,000 × 1.05(experience+GPA)

𝐻3(experience,GPA) = cos(experience) + sin(GPA)



Linear prediction rules

▶ We’ll restrict ourselves to linear prediction rules:

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA)

▶ As before, we can solve the normal equations to find 𝑤∗0,
𝑤∗1, and 𝑤∗2. All we need to do is change the design matrix
𝑋 .

▶ Linear regression with multiple features is called multiple
linear regression.



Geometric interpretation
Question: The prediction rule

𝐻(experience) = 𝑤0 + 𝑤1(experience)
looks like a line in 2D.

1. How many dimensions do we need to graph
𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA)

2. What is the shape of the prediction rule?



Example dataset

▶ For each of 𝑛 people, collect each feature, plus salary:

Person # Experience GPA Salary
1 3 3.7 85,000
2 6 3.3 95,000
3 10 3.1 105,000

▶ We represent each person with a feature vector:

⃗𝑥1 = [
3
3.7] , ⃗𝑥2 = [

6
3.3] , ⃗𝑥3 = [

10
3.1]



The hypothesis vector

▶ When our prediction rule is

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA),

the hypothesis vector ℎ⃗ ∈ ℝ𝑛 can be written

ℎ⃗ = [
𝐻(experience1,GPA1)
𝐻(experience2,GPA2)

...
𝐻(experience𝑛,GPA𝑛)

] = [
1 experience1 GPA1
1 experience2 GPA2
... ... ...
1 experience𝑛 GPA𝑛

] [
𝑤0
𝑤1
𝑤2
]



Finding the optimal parameters

▶ To find the best parameter vector, �⃗�∗, we can use the
design matrix and observation vector

𝑋 = [
1 experience1 GPA1
1 experience2 GPA2
... ... ...
1 experience𝑛 GPA𝑛

] , ⃗𝑦 = [
𝑦1
𝑦2
...
𝑦𝑛

]

and solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

▶ Notice that the rows of the design matrix are the
(transposed) feature vectors, with an additional 1 in front.



Notation for multiple linear regression

▶ We will need to keep track of multiple3 features for every
individual in our data set.

▶ As before, subscripts distinguish between individuals in
our data set. We have 𝑛 individuals (or training
examples).

▶ Superscripts distinguish between features.4 We have 𝑑
features.
▶ experience = 𝑥(1)
▶ GPA = 𝑥(2)

3In practice, we might use hundreds or even thousands of features.
4Think of them as new variable names, such as new letters.



Augmented feature vectors
▶ The augmented feature vector Aug( ⃗𝑥) is the vector
obtained by adding a 1 to the front of feature vector ⃗𝑥:

⃗𝑥 =
⎡⎢⎢⎢

⎣

𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥

⎦

Aug( ⃗𝑥) =
⎡⎢⎢⎢⎢⎢⎢

⎣

1

𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥⎥⎥⎥

⎦

�⃗� =
⎡⎢⎢⎢⎢⎢⎢

⎣

𝑤0
𝑤1
𝑤2
..
.

𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

▶ Then, our prediction rule is

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general problem

▶ We have 𝑛 data points (or training examples):
( ⃗𝑥1, 𝑦1) , … , ( ⃗𝑥𝑛, 𝑦𝑛) where each ⃗𝑥𝑖 is a feature vector of 𝑑
features:

⃗𝑥𝑖 = [

𝑥(1)𝑖
𝑥(2)𝑖
…
𝑥(𝑑)𝑖

]

▶ We want to find a good linear prediction rule:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general solution

▶ Use design matrix

𝑋 = [
1 𝑥(1)1 𝑥(2)1 … 𝑥(𝑑)1
1 𝑥(1)2 𝑥(2)2 … 𝑥(𝑑)2
... ... ... ...
1 𝑥(1)𝑛 𝑥(2)𝑛 … 𝑥(𝑑)𝑛

] = [
Aug( ⃗𝑥1)𝑇
Aug( ⃗𝑥2)𝑇

...
Aug( ⃗𝑥𝑛)𝑇

]

and observation vector to solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

to find the optimal parameter vector.



Interpreting the parameters

▶ With 𝑑 features, �⃗� has 𝑑 + 1 entries.

▶ 𝑤0 is the bias, also known as the intercept.

▶ 𝑤1, … , 𝑤𝑑 each give the weight, i.e. coefficient, of a
feature.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + … + 𝑤𝑑𝑥(𝑑)

▶ The sign of 𝑤𝑖 tells us about the relationship between 𝑖th
feature and the output of our prediction rule.



Summary



Summary

▶ We minimized the mean squared error for the prediction
rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥, which was

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ We found that the minimizing �⃗� satisfies the normal
equations, 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦.
▶ If 𝑋𝑇𝑋 is invertible, the solution is:

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ These same normal equations can be used to solve the
multiple linear regression problem, where we use
multiple features to predict an outcome. We simply need
to adjust the design matrix 𝑋 .


