Module 11 - The Normal Equations

DSC 40A, Summer 2023

Agenda

- Recap of Module 10.
- Minimizing mean squared error.
- Incorporating multiple features.

Recap of Module 10

Reframing regression using linear algebra

- Last time, we used linear algebra to reformulate our problem of fitting a linear prediction rule

$$
H(x)=w_{0}+w_{1} x
$$

- We defined a design matrix X, parameter vector \vec{w}, and observation vector \vec{y} as follows:

$$
x=\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\ldots & \ldots \\
1 & x_{n}
\end{array}\right], \quad \vec{w}=\left[\begin{array}{l}
w_{0} \\
w_{1}
\end{array}\right], \quad \vec{y}=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right]
$$

- Then we rewrote our prediction rule as a matrix-vector multiplication, defining the hypothesis vector \vec{h} as

$$
\vec{h}=x \vec{w}
$$

Minimizing mean squared error

- With our new linear algebra formulation of regression, our mean squared error now looks like:

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Today, we will minimize this function using calculus.
- We already saw a sneak peek of the result. The optimal parameter vector \vec{w}^{*} is ${ }^{1}$

$$
\overrightarrow{w^{*}}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

\Rightarrow This gives the same w_{0}^{*} and w_{1}^{*} as our formulas from Module 6.

Minimizing mean squared error, again

Some key linear algebra facts

If A and B are matrices, and $\vec{u}, \vec{v}, \vec{w}, \vec{z}$ are vectors:

- $(A+B)^{T}=A^{T}+B^{T}$
- $(A B)^{T}=B^{T} A^{T}$
- $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}=\vec{u}^{T} \vec{v}=\vec{v}^{\top} \vec{u}$
- $\|\vec{u}\|^{2}=\vec{u} \cdot \vec{u}$
$-(\vec{u}+\vec{v}) \cdot(\vec{w}+\vec{z})=\vec{u} \cdot \vec{w}+\vec{u} \cdot \vec{z}+\vec{v} \cdot \vec{w}+\vec{v} \cdot \vec{z}$

Goal

- We want to minimize the mean squared error:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Strategy: Calculus.
- Problem: This is a function of a vector. What does it even mean to take the derivative of $R_{\text {sq }}(\vec{w})$ with respect to a vector \vec{w} ?

A function of a vector

- Solution: A function of a vector is really just a function of multiple variables, which are the components of the vector. In other words,

$$
R_{\mathrm{sq}}(\vec{w})=R_{\mathrm{sq}}\left(w_{0}, w_{1}, \ldots, w_{d}\right)
$$

where $w_{0}, w_{1}, \ldots, w_{d}$ are the entries of the vector $\vec{w} .{ }^{2}$

- We know how to deal with derivatives of multivariable functions: the gradient!

[^0]
The gradient with respect to a vector

The gradient of $R_{\mathrm{sq}}(\vec{W})$ with respect to \vec{W} is the vector of partial derivatives:

$$
\nabla_{\vec{w}} R_{\mathrm{sq}}(\vec{w})=\frac{d R_{\mathrm{sq}}}{d \vec{w}}=\left[\begin{array}{c}
\frac{\partial R_{\mathrm{sq}}}{\partial w_{0}} \\
\frac{\partial R_{\mathrm{sq}}}{\partial w_{1}} \\
\vdots \\
\frac{\partial R_{\mathrm{sq}}}{\partial w_{d}}
\end{array}\right]
$$

where $w_{0}, w_{1}, \ldots, w_{d}$ are the entries of the vector \vec{w}.

Example gradient calculation

Example: Suppose $f(\vec{x})=\vec{a} \cdot \vec{x}$, where \vec{a} and \vec{x} are vectors in \mathbb{R}^{n}. What is $\frac{d}{d \vec{x}} f(\vec{x})$?

Goal

- We want to minimize the mean squared error:

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- Strategy:

1. Compute the gradient of $R_{\mathrm{sq}}(\vec{w})$.
2. Set it to zero and solve for \vec{w}.

- The result is called \vec{w}^{*}.
- Let's start by rewriting the mean squared error in a way that will make it easier to compute its gradient.

Rewriting mean squared error

$R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}$

Discussion Question

Which of the following is equivalent to $R_{\mathrm{sq}}(\vec{w})$?
a) $\frac{1}{n}(\vec{y}-X \vec{w}) \cdot(X \vec{w}-\vec{y})$
b) $\frac{1}{n} \sqrt{(\vec{y}-X \vec{w}) \cdot(\vec{y}-X \vec{w})}$
c) $\frac{1}{n}(\vec{y}-X \vec{w})^{T}(\vec{y}-X \vec{w})$
d) $\frac{1}{n}(\vec{y}-X \vec{w})(\vec{y}-X \vec{w})^{T}$

Rewriting mean squared error

$$
R_{\mathrm{sq}}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

Rewriting mean squared error $R_{\mathrm{sq}}(\vec{w})=$

Compute the gradient

$$
\begin{aligned}
\frac{d R_{\mathrm{sq}}}{d \vec{w}} & =\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-2 X^{T} \vec{y} \cdot \vec{w}+\vec{w}^{T} X^{T} X \vec{w}\right]\right) \\
& =\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(2 X^{T} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{T} X^{T} X \vec{w}\right)\right]
\end{aligned}
$$

Compute the gradient

$$
\begin{aligned}
& \frac{d R_{s q}}{d \vec{w}}
\end{aligned}=\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-2 X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right)
$$

Compute the gradient

$$
\begin{aligned}
& \frac{d R_{s q}}{d \vec{w}}=\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-2 X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right) \\
& \quad=\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(2 X^{\top} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)\right] \\
& \frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})=0 .
\end{aligned}
$$

$-\frac{d}{d \vec{w}}\left(\overrightarrow{2} x^{\top} \vec{y} \cdot \vec{w}\right)=2 x^{\top} y$.

- Why? We already showed $\frac{d}{d \vec{x}} \vec{a} \cdot \vec{x}=\vec{a}$.

Compute the gradient

$$
\begin{aligned}
& \frac{d R_{s q}}{d \vec{w}}=\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-2 X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right) \\
& \quad=\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(2 X^{\top} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)\right] \\
& \frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})=0 .
\end{aligned}
$$

- $\frac{d}{d \vec{w}}\left(\overrightarrow{2} X^{\top} \vec{y} \cdot \vec{w}\right)=2 X^{\top} y$.
- Why? We already showed $\frac{d}{d \vec{x}} \vec{a} \cdot \vec{x}=\vec{a}$.
$\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)=2 X^{\top} X \vec{w}$.
- Why? See Homework 2.

Compute the gradient

$$
\begin{aligned}
\frac{d R_{\mathrm{sq}}}{d \vec{w}} & =\frac{d}{d \vec{w}}\left(\frac{1}{n}\left[\vec{y} \cdot \vec{y}-2 X^{\top} \vec{y} \cdot \vec{w}+\vec{w}^{\top} X^{\top} X \vec{w}\right]\right) \\
& =\frac{1}{n}\left[\frac{d}{d \vec{w}}(\vec{y} \cdot \vec{y})-\frac{d}{d \vec{w}}\left(2 X^{\top} \vec{y} \cdot \vec{w}\right)+\frac{d}{d \vec{w}}\left(\vec{w}^{\top} X^{\top} X \vec{w}\right)\right]
\end{aligned}
$$

The normal equations

- To minimize $R_{\text {sq }}(\vec{w})$, set gradient to zero and solve for \vec{w} :

$$
\begin{array}{r}
-2 X^{\top} \vec{y}+2 X^{\top} X \vec{w}=0 \\
\Longrightarrow X^{\top} X \vec{w}=X^{\top} \vec{y}
\end{array}
$$

- This is a system of equations in matrix form, called the normal equations.
- If $X^{\top} X$ is invertible, the solution is

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- This is equivalent to the formulas for w_{0}^{*} and w_{1}^{*} we saw before!
- Benefit - this can be easily extended to more complex prediction rules.

Incorporating multiple features

Incorporating multiple features

- How do we predict salary given multiple features?
- We believe salary is a function of experience and GPA.
- In other words, we believe there is a function H so that:

$$
\text { salary } \approx H \text { (years of experience, GPA) }
$$

- Recall: H is a prediction rule.
- Our goal: find a good prediction rule, H.

Example prediction rules

$$
\begin{aligned}
& H_{1}(\text { experience, GPA })=\$ 2,000 \times(\text { experience })+\$ 40,000 \times \frac{\text { GPA }}{4.0} \\
& H_{2}(\text { experience, GPA })=\$ 60,000 \times 1.05^{(\text {experience+GPA })} \\
& H_{3}(\text { experience, GPA })=\cos (\text { experience })+\sin (G P A)
\end{aligned}
$$

Linear prediction rules

- We'll restrict ourselves to linear prediction rules:

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A)
$$

- As before, we can solve the normal equations to find w_{0}^{*}, w_{1}^{*}, and w_{2}^{*}. All we need to do is change the design matrix X.
- Linear regression with multiple features is called multiple linear regression.

Geometric interpretation

Question: The prediction rule

$$
H(\text { experience })=w_{0}+w_{1}(\text { experience })
$$

looks like a line in 2 D .

1. How many dimensions do we need to graph

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A)
$$

2. What is the shape of the prediction rule?

Example dataset

- For each of n people, collect each feature, plus salary:

Person \#	Experience	GPA	Salary
1	3	3.7	85,000
2	6	3.3	95,000
3	10	3.1	105,000

- We represent each person with a feature vector:

$$
\vec{x}_{1}=\left[\begin{array}{c}
3 \\
3.7
\end{array}\right], \quad \vec{x}_{2}=\left[\begin{array}{c}
6 \\
3.3
\end{array}\right], \quad \vec{x}_{3}=\left[\begin{array}{c}
10 \\
3.1
\end{array}\right]
$$

The hypothesis vector

- When our prediction rule is

$$
H(\text { experience, GPA })=w_{0}+w_{1}(\text { experience })+w_{2}(G P A),
$$

the hypothesis vector $\vec{h} \in \mathbb{R}^{n}$ can be written
$\vec{h}=\left[\begin{array}{c}H\left(\text { experience }_{1}, \mathrm{GPA}_{1}\right) \\ H\left(\text { experience }_{2}, \mathrm{GPA}_{2}\right) \\ \ldots\left(\text { experience }_{n}, \mathrm{GPA}_{n}\right)\end{array}\right]=\left[\begin{array}{ccc}1 & \text { experience }_{1} & \mathrm{GPA}_{1} \\ 1 & \text { experience }_{2} & \mathrm{GPA}_{2} \\ \ldots & \ldots & \ldots \\ 1 & \text { experience }_{n} & \mathrm{GPA}_{n}\end{array}\right]\left[\begin{array}{l}w_{0} \\ w_{1} \\ w_{2}\end{array}\right]$

Finding the optimal parameters

- To find the best parameter vector, \vec{w}^{*}, we can use the design matrix and observation vector

$$
X=\left[\begin{array}{ccc}
1 & \text { experience }_{1} & \mathrm{GPA}_{1} \\
1 & \text { experience }_{2} & \mathrm{GPA}_{2} \\
\ldots & \ldots & \ldots \\
1 & \text { experience }_{n} & \mathrm{GPA}_{n}
\end{array}\right], \vec{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\ldots \\
y_{n}
\end{array}\right]
$$

and solve the normal equations

$$
X^{\top} X \vec{w}^{\star}=X^{\top} \vec{y}
$$

- Notice that the rows of the design matrix are the (transposed) feature vectors, with an additional 1 in front.

Notation for multiple linear regression

- We will need to keep track of multiple ${ }^{3}$ features for every individual in our data set.
- As before, subscripts distinguish between individuals in our data set. We have n individuals (or training examples).
- Superscripts distinguish between features. ${ }^{4}$ We have d features.
\Rightarrow experience $=x^{(1)}$
- GPA $=x^{(2)}$

[^1]
Augmented feature vectors

- The augmented feature vector $\operatorname{Aug}(\vec{x})$ is the vector obtained by adding a 1 to the front of feature vector \vec{x} :

$$
\vec{x}=\left[\begin{array}{c}
x^{(1)} \\
x^{(2)} \\
\vdots \\
x^{(d)}
\end{array}\right] \quad \operatorname{Aug}(\vec{x})=\left[\begin{array}{c}
1 \\
x^{(1)} \\
x^{(2)} \\
\vdots \\
x^{(d)}
\end{array}\right] \quad \vec{w}=\left[\begin{array}{c}
w_{0} \\
w_{1} \\
w_{2} \\
\vdots \\
w_{d}
\end{array}\right]
$$

- Then, our prediction rule is

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The general problem

- We have n data points (or training examples): $\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)$ where each \vec{x}_{i} is a feature vector of d features:

$$
\vec{x}_{i}=\left[\begin{array}{c}
x_{i}^{(1)} \\
x_{i}^{(2)} \\
\ldots \\
x_{i}^{(d)}
\end{array}\right]
$$

- We want to find a good linear prediction rule:

$$
\begin{aligned}
H(\vec{x}) & =w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots+w_{d} x^{(d)} \\
& =\vec{w} \cdot \operatorname{Aug}(\vec{x})
\end{aligned}
$$

The general solution

- Use design matrix

$$
X=\left[\begin{array}{ccccc}
1 & x_{1}^{(1)} & x_{1}^{(2)} & \ldots & x_{1}^{(d)} \\
1 & x_{2}^{(1)} & x_{2}^{(2)} & \ldots & x_{2}^{(d)} \\
\ldots & \ldots & \ldots(& & \ldots \\
1 & x_{n}^{(1)} & x_{n}^{(2)} & \ldots & x_{n}^{(d)}
\end{array}\right]=\left[\begin{array}{c}
\operatorname{Aug}\left(\overrightarrow{x_{1}}\right)^{T} \\
\operatorname{Aug}\left(\vec{x}_{2}\right)^{T} \\
\ldots \\
\operatorname{Aug}\left(\vec{x}_{n}\right)^{T}
\end{array}\right]
$$

and observation vector to solve the normal equations

$$
X^{\top} X \vec{w}^{*}=X^{\top} \vec{y}
$$

to find the optimal parameter vector.

Interpreting the parameters

- With d features, \vec{w} has $d+1$ entries.
w_{0} is the bias, also known as the intercept.
> w_{1}, \ldots, w_{d} each give the weight, i.e. coefficient, of a feature.

$$
H(\vec{x})=w_{0}+w_{1} x^{(1)}+\ldots+w_{d} x^{(d)}
$$

- The sign of w_{i} tells us about the relationship between ith feature and the output of our prediction rule.

Summary

Summary

- We minimized the mean squared error for the prediction rule $H(x)=w_{0}+w_{1} x$, which was

$$
R_{s q}(\vec{w})=\frac{1}{n}\|\vec{y}-X \vec{w}\|^{2}
$$

- We found that the minimizing \vec{w} satisfies the normal equations, $X^{\top} X \vec{w}=X^{\top} \vec{y}$.
- If $X^{\top} X$ is invertible, the solution is:

$$
\vec{w}^{*}=\left(X^{\top} X\right)^{-1} X^{\top} \vec{y}
$$

- These same normal equations can be used to solve the multiple linear regression problem, where we use multiple features to predict an outcome. We simply need to adjust the design matrix X.

[^0]: ${ }^{2}$ In our case, \vec{w} has just two components, w_{0} and w_{1}. We'll be more general since we eventually want to use prediction rules with even more parameters.

[^1]: ${ }^{3}$ In practice, we might use hundreds or even thousands of features.
 ${ }^{4}$ Think of them as new variable names, such as new letters.

