
Module 12 – Multiple Linear Regression and
Feature Engineering

DSC 40A, Summer 2023



Agenda

▶ Incorporating multiple features.

▶ Interpreting parameters.

▶ Feature engineering.



Incorporating multiple features



Last time
▶ We minimized the mean squared error for the prediction
rule 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥, which was

𝑅𝑠𝑞(�⃗�) =
1
𝑛|| ⃗𝑦 − 𝑋�⃗�||

2

▶ We found that the minimizing �⃗� satisfies the normal
equations, 𝑋𝑇𝑋�⃗� = 𝑋𝑇 ⃗𝑦.
▶ If 𝑋𝑇𝑋 is invertible, the solution is:

�⃗�∗ = (𝑋𝑇𝑋)−1𝑋𝑇 ⃗𝑦

▶ These same normal equations can be used to solve the
multiple linear regression problem, where we use
multiple features to predict an outcome. We simply need
to adjust the design matrix 𝑋 .



Multiple linear regression example
▶ We’re want to fit a linear prediction rule with two features:

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA)

▶ Collect data for each of 𝑛 people:

Person # Experience GPA Salary
1 3 3.7 85,000
2 6 3.3 95,000
3 10 3.1 105,000

▶ We represent each person with a feature vector:

⃗𝑥1 = [
3
3.7] , ⃗𝑥2 = [

6
3.3] , ⃗𝑥3 = [

10
3.1]



Prediction rule form determines design matrix

▶ When our prediction rule is

𝐻(experience,GPA) = 𝑤0 + 𝑤1(experience) + 𝑤2(GPA),

the hypothesis vector ℎ⃗ ∈ ℝ𝑛 can be written

ℎ⃗ = [
𝐻(experience1,GPA1)
𝐻(experience2,GPA2)

...
𝐻(experience𝑛,GPA𝑛)

] = [
1 experience1 GPA1
1 experience2 GPA2
... ... ...
1 experience𝑛 GPA𝑛

] [
𝑤0
𝑤1
𝑤2
]

▶ Notice that the rows of the design matrix are the
(transposed) feature vectors, with an additional 1 in front.



Notation for multiple linear regression

▶ We will need to keep track of multiple1 features for every
individual in our data set.

▶ As before, subscripts distinguish between individuals in
our data set. We have 𝑛 individuals (or training
examples).

▶ Superscripts distinguish between features.2 We have 𝑑
features.
▶ experience = 𝑥(1)
▶ GPA = 𝑥(2)

1In practice, we might use hundreds or even thousands of features.
2Think of them as new variable names, such as new letters.



Augmented feature vectors
▶ The augmented feature vector Aug( ⃗𝑥) is the vector
obtained by adding a 1 to the front of feature vector ⃗𝑥:

⃗𝑥 =
⎡⎢⎢⎢

⎣

𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥

⎦

Aug( ⃗𝑥) =
⎡⎢⎢⎢⎢⎢⎢

⎣

1

𝑥(1)

𝑥(2)

..

.

𝑥(𝑑)

⎤⎥⎥⎥⎥⎥⎥

⎦

�⃗� =
⎡⎢⎢⎢⎢⎢⎢

⎣

𝑤0
𝑤1
𝑤2
..
.

𝑤𝑑

⎤⎥⎥⎥⎥⎥⎥

⎦

▶ Then, our prediction rule is

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general problem

▶ We have 𝑛 data points (or training examples):
( ⃗𝑥1, 𝑦1) , … , ( ⃗𝑥𝑛, 𝑦𝑛) where each ⃗𝑥𝑖 is a feature vector of 𝑑
features:

⃗𝑥𝑖 = [

𝑥(1)𝑖
𝑥(2)𝑖
…
𝑥(𝑑)𝑖

]

▶ We want to find a good linear prediction rule:

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + 𝑤2𝑥(2) + … + 𝑤𝑑𝑥(𝑑)
= �⃗� ⋅ Aug( ⃗𝑥)



The general solution

▶ Use design matrix

𝑋 = [
1 𝑥(1)1 𝑥(2)1 … 𝑥(𝑑)1
1 𝑥(1)2 𝑥(2)2 … 𝑥(𝑑)2
... ... ... ...
1 𝑥(1)𝑛 𝑥(2)𝑛 … 𝑥(𝑑)𝑛

] = [
Aug( ⃗𝑥1)𝑇
Aug( ⃗𝑥2)𝑇

...
Aug( ⃗𝑥𝑛)𝑇

]

and observation vector to solve the normal equations

𝑋𝑇𝑋�⃗�∗ = 𝑋𝑇 ⃗𝑦

to find the optimal parameter vector.



Terminology for parameters

▶ With 𝑑 features, �⃗� has 𝑑 + 1 entries.

▶ 𝑤0 is the bias, also known as the intercept.

▶ 𝑤1, … , 𝑤𝑑 each give the weight, i.e. coefficient, of a
feature.

𝐻( ⃗𝑥) = 𝑤0 + 𝑤1𝑥(1) + … + 𝑤𝑑𝑥(𝑑)



Interpreting parameters



Example: predicting sales

▶ For each of 26 stores, we have:
▶ net sales,
▶ square feet,
▶ inventory,
▶ advertising expenditure,
▶ district size, and
▶ number of competing stores.

▶ Goal: predict net sales given these features

▶ To begin:
𝐻(square feet, competitors) = 𝑤0+𝑤1(square feet)+𝑤2(competitors)



Example: predicting sales

𝐻(square feet, competitors) = 𝑤0+𝑤1(square feet)+𝑤2(competitors)

Discussion Question

What will be the sign of 𝑤∗1 and 𝑤∗2?
a) 𝑤∗1 = +, 𝑤∗2 = −
b) 𝑤∗1 = +, 𝑤∗2 = +
c) 𝑤∗1 = −, 𝑤∗2 = −
d) 𝑤∗1 = −, 𝑤∗2 = +



Example: predicting sales

𝐻(square feet, competitors) = 𝑤0+𝑤1(square feet)+𝑤2(competitors)

Discussion Question

What will be the sign of 𝑤∗1 and 𝑤∗2?
a) 𝑤∗1 = +, 𝑤∗2 = −
b) 𝑤∗1 = +, 𝑤∗2 = +
c) 𝑤∗1 = −, 𝑤∗2 = −
d) 𝑤∗1 = −, 𝑤∗2 = +

Let’s try it out ourselves. Follow along here.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/rodalbuyeh/dsc40a-2023-su-resources&subPath=resources/lecture/lec12/lec12.ipynb


Which features are most “important”?

Discussion Question

Which feature has the greatest effect on the outcome?

a) square feet: 𝑤∗1 = 16.202
b) competitors: 𝑤∗2 = −5.311
c) inventory: 𝑤∗2 = 0.175
d) advertising: 𝑤∗3 = 11.526
e) district size: 𝑤∗4 = 13.580



Which features are most “important”?

▶ The most important feature is not necessarily the feature
with largest weight.

▶ Features are measured in different units, scales.
▶ Suppose I fit one prediction rule, 𝐻1, with sales in
dollars, and another prediction rule, 𝐻2, with sales in
thousands of dollars.

▶ Sales is just as important in both prediction rules.
▶ But the weight of sales in 𝐻1 will be 1000 times
smaller than the weight of sales in 𝐻2.

▶ Intuitive explanation: 5 × 45000 = (5 × 1000) × 45.

▶ Solution: before doing regression, standardize each
feature, i.e. convert each feature to standard units.



Standard units
▶ Recall: to convert a feature 𝑥1, 𝑥2, ..., 𝑥𝑛 to standard units,
we use the formula

𝑥𝑖 in standard units =
𝑥𝑖 − �̄�
𝜎𝑥

▶ Example: 1, 7, 7, 9
▶ Mean:

▶ Standard deviation:

▶ Standardized data:



Standard units for multiple linear regression

▶ The result of standardizing each feature (separately!) is
that the units of each feature are on the same scale.
▶ There’s no need to standardize the outcome (net
sales), since it’s not being compared to anything.

▶ Then, solve the normal equations. The resulting
𝑤∗0, 𝑤∗1, … , 𝑤∗𝑑 are called the standardized regression
coefficients.

▶ Standardized regression coefficients can be directly
compared to one another.

Let’s try it out in our demo notebook.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/rodalbuyeh/dsc40a-2023-su-resources&subPath=resources/lecture/lec12/lec12.ipynb


Feature engineering



Question: Would a linear prediction rule work well on this
dataset?



A quadratic prediction rule

▶ It looks like there’s some sort of quadratic relationship
between horsepower and mpg in the last scatter plot. We
want to try and fit a prediction rule of the form

𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2

▶ Note that while this is quadratic in horsepower, it is
linear in the parameters!

▶ We can do that, by choosing our two “features” to be 𝑥𝑖
and 𝑥2𝑖 , respectively.
▶ In other words, 𝑥(1)𝑖 = 𝑥𝑖 and 𝑥

(2)
𝑖 = 𝑥2𝑖 .

▶ More generally, we can create new features out of
existing features.



A quadratic prediction rule

▶ Desired prediction rule: 𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2.

▶ The resulting design matrix looks like this:

𝑋 = [
1 𝑥1 𝑥21
1 𝑥2 𝑥22
...
1 𝑥𝑛 𝑥2𝑛

]

▶ To find optimal parameter vector �⃗�∗: solve the normal
equations!

𝑋𝑇𝑋𝑤∗ = 𝑋𝑇𝑦



More examples

▶ What if we want to use a prediction rule of the form
𝐻(𝑥) = 𝑤0 + 𝑤1𝑥 + 𝑤2𝑥2 + 𝑤3𝑥3?

▶ What if we want to use a prediction rule of the form
𝐻(𝑥) = 𝑤1

1
𝑥2 + 𝑤2 sin 𝑥 + 𝑤3𝑒𝑥?



Feature engineering

▶ More generally, we can create new features out of existing
information in our dataset. This process is called feature
engineering.
▶ In this class, feature engineering will mostly be
restricted to creating non-linear functions of existing
features (as in the previous example).

▶ In the future you’ll learn how to do other things, like
encode categorical information.



Summary



Summary

▶ The normal equations can be used to solve the multiple
linear regression problem, where we use multiple
features to predict an outcome.

▶ We can interpret the parameters as weights. The signs of
weights give meaningful information, but we can only
compare weights if our features are standardized.

▶ We can create non-linear features out of existing features.
This process is called feature engineering.
▶ A prediction rule only needs to be a linear function of
the parameters for us to use linear regression. It
does not need to be a linear function of the features.


