Module 13 - Feature Engineering, Clustering

DSC 40A, Summer 2023

Announcements

Homework is due tomorrow at 11:59pm.

No groupwork this week during discussion. Instead, TAs
will discuss extensions of linear regression to
classification, classification loss metrics, and
regularization.

Midterm 1is Wednesday during lecture

Open notes. No online calculators or generative models.
No calculators with derivative capability.

We will not answer questions during the exam. State your
assumptions if anything is unclear.

The exam will include long-answer homework-style
questions, as well as short-answer questions such as
multiple choice or filling in a numerical answer.

The exam covers everything up to the feature engineering
content (but not clustering).

Midterm study strategy

Review the written solutions to previous homeworks and
groupworks.

Identify which concepts are still iffy. Re-watch podcasts,
post on Campuswire, come to office hours, use resources
on course website.

Work through past exams on course website.
Study in groups.

Summarize key facts and formulas.

https://rodalbuyeh.github.io/dsc40a-su23/Resources/
https://rodalbuyeh.github.io/dsc40a-su23/Resources/

Agenda

Feature engineering.
Taxonomy of machine learning.

Clustering.

Feature engineering

Last time: Cars

MPG vs. Horsepower

mpg

50 100 150 200

horsepower

Question: Would a linear prediction rule work well on this
dataset?

A quadratic prediction rule

It looks like there’s some sort of quadratic relationship
between horsepower and MPG in the last scatter plot. We
want to try and fit a prediction rule of the form

H(X) = Wy + W, X + W,Xx*

Note that while this is quadratic in horsepower, it is
linear in the parameters!

We can do that, by choosing our two “features” to be x;

and x,-z, respectively.

1 2
In other words, x,(- X; and xf). x,-z.

More generally, we can create new features out of
existing features.

A quadratic prediction rule

Desired prediction rule: H(x) = w, + w, X + w, X2

The resulting design matrix looks like this:

2

1 X, x5

X = 1 X, X5
2

1 X, X

To find optimal parameter vector w*: solve the normal
equations!

XTXw* =Xy

More examples
What if we want to use a prediction rule of the form

- 2 32
H(X) = Wy + W, X + W, X + Wy X7

What if we want to use a prediction rule of the form
H(x) = w5 + w, sin x + wye*?

Feature engineering

The process of creating new features out of existing

information in our dataset is called feature engineering.
In this class, feature engineering will mostly be
restricted to creating non-linear functions of existing
features (as in the previous example).

In the future you’ll learn how to do other things, like
encode categorical information.

Non-linear functions of multiple features

Recall our example from last lecture of predicting sales
from square footage and number of competitors. What if
we want a prediction rule of the form

H(sqft,comp) = w, + w,sqft + wzsqft2
+w;comp +w,sqft - comp

- 2
= Wy + W, S+ W,S° + W€ + W, SC
Make design matrix:

1 s c

T T Where s. and ¢ are
square footage and
1 s, s2 ¢, s, q ge
X = number of competitors
for store i, respectively.
1 s, s2 ¢ s.¢C

Finding the optimal parameter vector, W*

As long as the form of the prediction rule permits us to
write h = Xw for some X and w, the mean squared error is

- _ 1 - - 2
Ryg 1) = ~ I - Xit|

Regardless of the values of X and w,

dRSq

dw
= -2XTy+2X"XW =0

= X"XWw* = XTy.

=0

The normal equations still hold true!

Linear in the parameters

We can fit rules like:

log 2x)
x(2)

2
2 -x(M ()
Wy + WX + W, X w,e + W, cos(X' + 1) + w,

This includes arbitrary polynomials.

We can't fit rules like:

wy + e wy + sin(w, x(V + w,x(2))
We can have any number of parameters, as long as our
prediction rule is linear in the parameters, or linear when
we think of it as a function of the parameters.

Determining function form

How do we know what form our prediction rule should
take?

Sometimes, we know from theory, using knowledge about
what the variables represent and how they should be
related.

Other times, we make a guess based on the data.
Generally, start with simpler functions first.

Remember, the goal is to find a prediction rule that
will generalize well to unseen data.

Example: Amdahl's Law

Amdahl’'s Law relates the runtime of a program on p
processors to the time to do the sequential and
nonsequential parts on one processor.

tNS
H(p) = t. + —
(p) = tg P

Collect data by timing a program with varying numbers of
processors:

Processors Time (Hours)

1 8
2 4
4 3

Example: fitting H(x) = w, + w, - %

BN 2 x
w B o<

Example: Amdahl's Law
. .. _ _ 48 -
The solutionis: t; =1, t,¢ = — =6.86
Therefore our prediction rule is:
tNS
H(p) =t. + —
(p) = ts P

6.86

=1+ —

p

Transformations

How do we fit prediction rules that aren't linear
in the parameters?

Suppose we want to fit the prediction rule
H(x) = wye"*

This is not linear in terms of w, and w,, so our results for
linear regression don’t apply.

Possible Solution: Try to apply a transformation.

Transformations

Question: Can we re-write H(x) = w,e"1* as a prediction
rule that is linear in the parameters?

Transformations

Solution: Create a new prediction rule, T(x), with

parameters b, and b,, where T(x) = b, + b, x.
This prediction rule is related to H(x) by the
relationship T(x) = log H(x).

b is related to W by b, =logw, and b, = w,.
logy,

Our new observation vector, Z, is logy, .
logy,

T(x) = by + b,x is linear in its parameters, b, and b,.

Use the solution to the normal equations to find b*, and
the relationship between b and w to find w*.

Demo

Let's try this out in a Jupyter notebook. Follow along here.

http://datahub.ucsd.edu/user-redirect/git-sync?repo=https://github.com/rodalbuyeh/dsc40a-2023-su-resources&subPath=resources/lecture/lec13/lec13.ipynb

Non-linear prediction rules in general

Sometimes, it's just not possible to transform a prediction
rule to be linear in terms of some parameters.

In those cases, you'd have to resort to other methods of
finding the optimal parameters.
For example, with H(x) = w,e"*, we could use
gradient descent or a similar method to minimize
mean squared error, R(wy, w;) = T 37 (y; - wye"ri)’,
and find wg, wy that way.

Prediction rules that are linear in the parameters are
much easier to work with.

Taxonomy of machine learning

What is machine learning?

One definition: Machine learning is about getting a
computer to find patterns in data.

Have we been doing machine learning in this class? Yes.

Given a dataset containing salaries, predict what my
future salary is going to be.

Given a dataset containing years of experience, GPAs,
and salaries, predict what my future salary is going to
be given my years of experience and GPA.

Taxonomy of
Machine Learning

Ldoeled D
@
Supervised Re‘ifforc?mem Unsupervised
i earnin .
Learning el Learning
Quantitative Categorical
Response Response . . .
Dimensionality Clustering
Regression Classification Reduction

Alpha Go

. +
. G
. +
) | T o
- g o260 o

taken from Joseph Gonzalez at UC Berkeley

Clustering

Question: how might we “cluster” these points
into groups?

Rating_Brooklyn_99
N

0 1 2 3 4 5 6 7 8
Rating_Squid_Game

Problem statement: clustering

Goal: Given a list of n data points, stored as vectors in RY,
X, Xy, . X, @and a positive integer R, place the data points into
k groups of nearby points.

These groups are called “clusters”.

Think about groups as types.
i.e., the goal of clustering is to assign each point a
type, such that points of the same type are close to
one another.

Note, unlike with regression, there is no “right answer”
that we are trying to predict — there is no y!
Clustering is an unsupervised method.

How do we define a group?

One solution: pick k cluster centers, i.e. centroids:
- - - . d
”11“2:---7“k in R

These k centroids define the k groups.

Each data point “belongs” to the group corresponding to
the nearest centroid.

This reduces our problem from being “find the best group
for each data point” to being “find the best locations for
the centroids”.

Rating_Brooklyn_99

Rating_Brooklyn_99

Rating_Squid_Game

