
Module 14 - Clustering

DSC 40A, Summer 2023



Agenda▶ The clustering problem.▶ k-Means Clustering algorithm.▶ Why does k-Means work?▶ Practical considerations.



The clustering problem



Question: how might we “cluster” these points
into groups?



Problem statement: clustering
Goal: Given a list of 𝑛 data points, stored as vectors in ℝ𝑑 ,⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, and a positive integer 𝑘, place the data points into𝑘 groups of nearby points.▶ These groups are called “clusters”.▶ Think about groups as types.▶ i.e., the goal of clustering is to assign each point a

type, such that points of the same type (i.e. having
similar attributes) are close to one another.▶ Note, unlike with regression, there is no “right answer”

that we are trying to predict — there is no 𝑦!▶ Clustering is an unsupervised method.



How do we define a group?

▶ One solution: pick 𝑘 cluster centers, i.e. centroids:�⃗�1, �⃗�2, ..., �⃗�𝑘 in ℝ𝑑▶ These 𝑘 centroids define the 𝑘 groups.▶ Each data point “belongs” to the group corresponding to
the nearest centroid.▶ This reduces our problem from being “find the best group
for each data point” to being “find the best locations for
the centroids”.
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How do we pick the centroids?▶ Let’s come up with an cost function, 𝐶, which describes
how good a set of centroids is.▶ Cost functions are a generalization of empirical risk

functions.▶ One possible cost function:𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗▶ This 𝐶 has a special name, inertia.▶ Lower values of 𝐶 lead to “better” clusterings.▶ Goal: Find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that minimize 𝐶.
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Discussion Question

Suppose we have 𝑛 data points, ⃗𝑥1, ⃗𝑥2, ..., ⃗𝑥𝑛, each of
which are in ℝ𝑑 .
Suppose we want to cluster our dataset into 𝑘 clusters.
How many ways can we assign points to clusters?
a) 𝑑 ⋅ 𝑘
b) 𝑑𝑘
c) 𝑛𝑘
d) 𝑘𝑛
e) 𝑛 ⋅ 𝑘 ⋅ 𝑑
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How do we minimize inertia?

▶ Problem: there are exponentially many possible
clusterings. It would take too long to try them all.▶ Another Problem: we can’t use calculus or algebra to
minimize 𝐶, since inertia is a piece-wise function so not
differentiable at every point. It is a combinatorial
problem of group assignment, so non-convex with
multiple local minima.▶ We need another solution.



k-Means Clustering



k-Means Clustering, i.e. Lloyd’s Algorithm

Here’s an algorithm that attempts to minimize inertia:
1. Pick a value of 𝑘 and randomly initialize 𝑘 centroids.
2. Keep the centroids fixed, and update the groups.▶ Assign each point to the nearest centroid.

3. Keep the groups fixed, and update the centroids.▶ Move each centroid to the center of its group.

4. Repeat steps 2 and 3 until the centroids stop changing.
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Example

See the following site for an interactive visualization of
k-Means Clustering: https://tinyurl.com/40akmeans



An example by hand
Suppose we choose the initial centroids 𝜇1 = [21] and 𝜇2 = [34].
Where will the centroids move to after one iteration of
k-Means Clustering?
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Demo

Let’s see k-Means Clustering in action. Follow along here.



Why does k-Means work?



What is the goal of k-Means Clustering?

▶ Recall, our goal is to find the centroids 𝜇1, 𝜇2, ..., 𝜇𝑘 that
minimize inertia:𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each

data point ⃗𝑥𝑖 to its
closest centroid 𝜇𝑗▶ Let’s argue that each step of the k-Means Clustering

algorithm reduces inertia.▶ After enough iterations, inertia will be small enough.
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Why does k-Means work? (Step 1)

Step 1: Pick a value of 𝑘 and randomly initialize 𝑘 centroids.▶ After initializing our 𝑘 centroids, we have an initial value
of inertia. We are going to argue that this only decreases.
-
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Why does k-Means work? (Step 2)

Step 2: Keep the centroids fixed, and update the groups by
assigning each point to the nearest centroid.▶ Assuming the centroids are fixed, for each ⃗𝑥𝑖 we have a

choice — which group should it be a part of?▶ Whichever group we choose, inertia will be calculated
using the squared distance between ⃗𝑥𝑖 and that group’s
centroid.▶ Thus, to minimize inertia, we assign each ⃗𝑥𝑖 to the group
corresponding to the closest centroid.

Note that this analysis holds every time we’re at Step 2, not
just the first time.



Why does k-Means work? (Step 3)

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).▶ Before we justify why this is optimal, let’s revisit inertia.
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Aside: separating inertia▶ Inertia:𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = total squared distance of each
data point ⃗𝑥𝑖to its
closest centroid 𝜇𝑗▶ Note that an equivalent way to write inertia is𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where𝐶(𝜇𝑗) = total squared distance of each
data point ⃗𝑥𝑖 in group 𝑗
to centroid 𝜇𝑗▶ What’s the point?
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Why does k-Means work? (Step 3)

𝐶(𝜇1, 𝜇2, ..., 𝜇𝑘) = 𝐶(𝜇1) + 𝐶(𝜇2) + ... + 𝐶(𝜇𝑘) where𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Step 3: Keep the groups fixed, and update the centroids by
moving each centroid to the center of its group (by averaging
coordinates).▶ Let’s argue why this minimizes 𝐶(𝜇𝑗), for each group 𝑗.



Why does k-Means work? (Step 3)𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [𝑎𝑏] to minimize 𝐶(𝜇𝑗)?
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Why does k-Means work? (Step 3)
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Why does k-Means work? (Step 3)𝐶(𝜇𝑗) = total squared distance of each data point ⃗𝑥𝑖
in group 𝑗 to centroid 𝜇𝑗

Suppose group 𝑗 contains the points (4, 3), (6, 4), and (8, 2).
Where should we put 𝜇𝑗 = [𝑎𝑏] to minimize 𝐶(𝜇𝑗)?



Cost and empirical risk▶ On the previous slide, we saw a function of the form𝐶(𝜇𝑗) = 𝐶(𝑎, 𝑏) = (4 − 𝑎)2 + (3 − 𝑏)2+ (6 − 𝑎)2 + (4 − 𝑏)2+ (8 − 𝑎)2 + (2 − 𝑏)2
▶ 𝐶(𝑎, 𝑏) can be thought of as the sum of two separate
functions, 𝑓(𝑎) and 𝑔(𝑏).▶ 𝑓(𝑎) = (4 − 𝑎)2 + (6 − 𝑎)2 + (8 − 𝑎)2 computes the total

squared distance of each 𝑥1 coordinate to 𝑎.▶ From earlier in the course, we know that 𝑎∗ = 4+6+83 = 6
minimizes 𝑓(𝑎).



Practical considerations



Initialization▶ Depending on our initial centroids, k-Means may
“converge” to a clustering that doesn’t actually have the
lowest possible inertia.▶ In other words, like gradient descent, k-Means can

get caught in a local minimum.▶ Some solutions:▶ Run k-Means several times, each with different
randomly chosen initial centroids. Keep track of the
inertia of the final result in each attempt. Choose the
attempt with the lowest inertia.▶ k-Means++: choose one initial centroid at random,
and place other centroids far from all other centroids.
↳ K-medoids:median based, robustto outliers
fuzzy (-mems:points in multiple groups



Choosing 𝑘
▶ Note that as 𝑘 increases, inertia decreases.▶ Intuitively, as we add more centroids, the distance

between each point and its closest centroid will drop.▶ But the goal of clustering is to put data points into
groups, and having a large number of groups may not be
meaningful.▶ This suggests a tradeoff between 𝑘 and inertia.



The “elbow” method▶ Strategy: run k-Means Clustering for many choices of 𝑘
(e.g. 𝑘 = 1, 2, 3, ..., 8).▶ Compute the value of inertia for each resulting set of
centroids.▶ Plot a graph of inertia vs 𝑘.▶ Choose the value of 𝑘 that appears at an “elbow”.

See the notebook for a demo.
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Low inertia isn’t everything!

▶ Even if k-Means works as intended and finds the choice of
centroids that minimize inertia, the resulting clustering
may not look “right” to us humans.▶ Recall, inertia measures the total squared distance to

centroids.▶ This metric doesn’t always match our intuition.▶ Let’s look at some examples at
https://tinyurl.com/40akmeans.▶ Go to “I’ll Choose” and “Smiley Face”. Good luck!





Other clustering techniques

▶ k-Means Clustering is just one way to cluster data.▶ There are many others, each of which work differently and
produce different kinds of results.▶ Another common technique: agglomerative clustering.▶ High level: start out with each point being in its own

cluster. Repeatedly combine clusters until only 𝑘 are
left.▶ Check out this chart.⑧



Summary

▶ k-Means Clustering attempts to minimize inertia.▶ We showed that it minimizes inertia at each step, but
it’s possible that it converges to a local minimum.▶ Different initial centroids can lead to different
clusterings.▶ To choose 𝑘, the number of clusters, we can use the

elbow method.▶ Next time: switching gears to probability and
combinatorics.

I think of this as ceiling fork


